Probability Theory II

MAT 5171

Hanan Ather

Winter 2024

Contents

1	January 8, 2024 1.1 Sums of independent random variables	3
2	January 10, 2024 2.1 Convergence of Random Series continued	6 6 7
3	January 15, 2024 3.1 Convergence of Distributions, Probability, & Almost Sure	9
4		12 12
5	5.1 Intergration to the limit	15 15 16
6		17 17
7	7.1 Characteristic Functions Continued	20 20 22
8		24 24
9		28 28
10		32 32
11		36
12		40
13	13.1 Proof of Conditional Jensen Inequality	44 44 45

-	٧						1	
(i	O	n	١T	e	n	ts	

Probability Theory II, $\operatorname{Hanan}\,\operatorname{Ather}$

14	March 11, 2024 14.1 Markov Inequality for Cond. Expectation	47 47 48
15	March 13, 2024 15.1 Markov Decision Process	50 50 51
16	March 18, 2024 16.1 Section 35 Martingales Continued	52 52
17	March 20, 2024	55
18	March 27, 2024 18.1 Martingales Continued	58 58 59

 \star These notes were created during my review process to aid my own understanding and not written for the purpose of instruction. I originally wrote them only for myself, and they may contain typos and errors ^a. No professor has verified or confirmed the accuracy of these notes. With that said, I've decided to share these notes on the off chance they are helpful to anyone else.

§1 January 8, 2024

§1.1 Sums of independent random variables

Strong Law of Large Numbers: Let $(X_i)_{i\geq 1}$ be independent and identically distributed (i.i.d.) random variables with finite expected value $\mathbb{E}[X_1]$. Define $S_n = \sum_{i=1}^n X_i$. Then, the Strong Law of Large Numbers states:

$$\frac{S_n}{n} \to \mathbb{E}[X_1]$$
 almost surely as $n \to \infty$.

Kolmogorov 0-1 Law: If $(X_n)_{n\geq 1}$ are independent random variables, then for any event A in the tail σ -field \mathcal{T} , defined as

$$\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(X_n, X_{n+1}, \dots),$$

we have $\mathbb{P}(A) \in \{0, 1\}.$

Corollary 1.1

If $(X_n)_{n\geq 1}$ are independent random variables, and $A=\left\{\lim_{n\to\infty}\frac{S_n}{n}=0\right\}$ and $B=\left\{S_n \text{ converges}\right\}$, then $\mathbb{P}(A)\in\{0,1\}$ and $\mathbb{P}(B)\in\{0,1\}$.

Theorem 1.2 (Kolmogorov Maximal Inequality) — Let $(X_n)_{n\geq 1}$ be independent random variables with $\mathbb{E}(X_n)=0$ and $\mathbb{E}(X_n^2)<\infty$ for all n. Then, for any $\alpha>0$,

$$\mathbb{P}\left(\max_{k\leq n}|S_k|\geq \alpha\right)\leq \frac{1}{\alpha^2}\mathbb{E}(S_n^2).$$

Proof. Let $\tilde{A}_k = \{|S_k| \geq \alpha\}$ and note that $\{\max_{k \leq n} |S_k| \geq \alpha\} = \bigcup_{k=1}^n \tilde{A}_k$. We disjointize the events \tilde{A}_k by taking:

$$\tilde{A}_k = \tilde{A}_k \setminus \left(\bigcup_{i=1}^{k-1} \tilde{A}_i\right) \quad \text{for } k = 2, \dots, n,$$

and

$$\tilde{A}_k = \bigcup_{i=1}^k \tilde{A}_i$$
 for $k = 1, \dots, n$.

It can be proven that

$$\max_{k \le n} |S_k| \ge \alpha$$
 is equivalent to $\bigcup_{k=1}^n \tilde{A}_k$.

Note that:

$$\mathbb{E}(S_n^2) = \int_{\Omega} S_n^2 dP \ge \sum_{k=1}^n \int_{\tilde{A}_k} S_n^2 dP = \sum_{k=1}^n \int_{\tilde{A}_k} (S_k^2 + (S_n - S_k)^2) dP,$$

^aAny corrections are greatly appreciated.

where $(\tilde{A}_k)_{k=1,\ldots,n}$ are disjoint.

$$\mathbb{E}(S_n^2) \ge \sum_{k=1}^n \int_{A_k} \left(S_k^2 + 2S_k (S_n - S_k) + (S_n - S_k)^2 \right) dP.$$

Since $(S_n - S_k)^2 \ge 0$, this simplifies to:

$$\mathbb{E}(S_n^2) \ge \sum_{k=1}^n \int_{A_k} \left(S_k^2 + 2S_k (S_n - S_k) \right) dP.$$

Noting that

$$\int_{A_k} S_k(S_n - S_k) dP = \int_{A_k} \left(\sum_{i=1}^k X_i \right) \left(\sum_{j=k+1}^n X_j \right) dP,$$

and since $\{X_i\}_{i=1}^n$ are independent, we have

$$\mathbb{E}\left[\left(\sum_{i=1}^{k} X_i\right) \left(\sum_{j=k+1}^{n} X_j\right)\right] = 0.$$

Thus,

$$\int_{A_k} S_k(S_n - S_k) \, dP = 0,$$

and

$$\mathbb{E}(S_n^2) = \sum_{k=1}^n \mathbb{E}(X_k^2) = 0.$$

It follows that:

$$\mathbb{E}(S_n^2) \ge \sum_{k=1}^n \alpha^2 \mathbb{P}(A_k) = \alpha^2 \sum_{k=1}^n \mathbb{P}(A_k),$$

where $A_k = \{|S_k| \geq \alpha\}$, and the events A_k are disjoint.

In summary, we obtained:

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_k\right) \le \frac{1}{\alpha^2} \mathbb{E}(S_n^2).$$

The conclusion follows from (1) and (2).

Theorem 1.3 (Etemadi's Inequality) — Let $(X_n)_{n\geq 1}$ be independent random variables and let $S_n = \sum_{i=1}^n X_i$. Then, for any $\alpha > 0$, we have

$$P\left(\max_{1\leq r\leq n}|S_r|\geq 3\alpha\right)\leq 3\max_{1\leq r\leq n}P(|S_r|\geq \alpha).$$

Proof. Omitted. \Box

Theorem 1.4 (Kolmogorov's Criterion) — Let $(X_n)_{n\geq 1}$ be independent random variables with $E(X_n)=0$ for all n and $\sum_{n=1}^{\infty} E(X_n^2)<\infty$. Then, the series $\sum_{n=1}^{\infty} X_n$ converges almost surely.

Proof: Step 1. Note that by Kolmogorov's maximal inequality, for each integer $n \ge 1$ and $\epsilon > 0$, we have

$$P\left(\max_{1\leq r\leq n}|S_{n+r}-S_n|>\epsilon\right)\leq \frac{1}{\epsilon^2}\sum_{i=n+1}^{n+r}E(X_i^2),$$

where $S_{n+r} - S_n = \sum_{i=n+1}^{n+r} X_i$ and (X_i) are independent random variables with $E(X_i) = 0$. Letting $r \to \infty$, we get

$$P\left(\sup_{r\geq 1}|S_{n+r}-S_n|>\epsilon\right)\leq \frac{1}{\epsilon^2}\sum_{i=n+1}^{\infty}E(X_i^2).$$

Finally, letting $n \to \infty$, we obtain

$$\lim_{n\to\infty} P\left(\sup_{r\geq 1} |S_{n+r} - S_n| > \epsilon\right) = 0 \quad \forall \epsilon > 0.$$

This completes the proof of the assertion.

§2 January 10, 2024

§2.1 Convergence of Random Series continued

Proof of Theorem 22.6 (Continued from last time). Step 1 concluded with:

$$\lim_{n \to \infty} P\left(\sup_{r>1} |S_{n+r} - S_n| > \epsilon\right) = 0 \quad \forall \epsilon > 0.$$
 (1)

Step 2: Define $E_n(\epsilon) = \{\sup_{s,r \geq n} |S_s - S_r| > 2\epsilon \}$ and let $E(\epsilon) = \bigcap_{n=1}^{\infty} E_n(\epsilon)$. Note that $P(E_n(\epsilon)) \downarrow P(E(\epsilon))$ as $n \to \infty$.

Furthermore, observe that if $|S_j - S_n| > 2\epsilon$ then $|S_i - S_n| > \epsilon$ or $|S_R - S_n| > \epsilon$ for some $i, R \ge n$. To see this, assume by contradiction that both $|S_i - S_n| \le \epsilon$ and $|S_R - S_n| \le \epsilon$. Then

$$|S_i - S_R| = |(S_i - S_n) + (S_n - S_R)| \le |S_i - S_n| + |S_n - S_R| \le 2\epsilon$$

which contradicts our assumption that $|S_j - S_R| > 2\epsilon$.

Hence.

$$\sup_{j,R \ge n} |S_j - S_R| > 2\epsilon \implies \bigcup_{j,R \ge n} (|S_j - S_n| > \epsilon) \text{ or } (|S_R - S_n| > \epsilon),$$

and so, $E_n(\epsilon) = \bigcup_{j>n} \{|S_j - S_n| > \epsilon\}$, which we denote by $A_n(\epsilon)$.

Therefore, we can summarize that

$$P\left(\bigcup_{R\geq n}A_R\right)\leq \frac{1}{\epsilon^2}E(S_n^2),$$

Recall that $A_n(\epsilon) = \{\sup_{j \geq n} |S_j - S_n| > \epsilon\}$ and by equation (1), $P(A_n(\epsilon)) \to 0$ as $n \to \infty$. Since $P(E_n(\epsilon)) \leq P(A_n(\epsilon))$ by the squeeze principle, we have $P(E_n(\epsilon)) \to 0$ as $n \to \infty$. Thus,

$$P(E(\epsilon)) = 0 \quad \forall \epsilon > 0. \tag{3}$$

Finally, define $E = \bigcup_{\epsilon > 0} E(\epsilon)$. Then, by countable additivity,

$$P(E) \le \sum_{\epsilon > 0} P(E(\epsilon)) = 0.$$

To summarize, we have shown that P(E) = 0 (equation 3).

$$E = \left\{ \exists \epsilon > 0 \text{ such that } \forall n, \sup_{j \geq n} |S_j - S_n| > 2\epsilon \right\} = \left\{ (S_n)_n \text{ is not a Cauchy sequence} \right\}.$$

Hence, $P(E^c) = 1$. This proves that $(S_n)_n$ is a convergent sequence almost surely.

Theorem 2.1 (22.7) — Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables and $S_n = \sum_{i=1}^n X_i$. If $S_n \to S$ almost surely, then $S_n \xrightarrow{\text{a.s.}} S$.

Proof. The main effort will be to prove again that (1) holds. Then, exactly as in the proof of Theorem 22.6, we conclude that $(S_n)_{n\geq 1}$ converges almost surely to a limit that we may call T. Since $S_n \xrightarrow{\text{a.s.}} T$ implies that $S_n \to P$, and by uniqueness of the limit, T = S almost surely. Hence $S_n \to S$ almost surely.

Let us prove (1). The probability that the partial sums deviate from S by at least ϵ can be bounded by

$$P(|S_{n+j} - S_n| \ge \epsilon) \le P(|S_{n+j} - S| \ge \frac{\epsilon}{2}) + P(|S_n - S| \ge \frac{\epsilon}{2}).$$

Taking the supremum over $j \geq 1$, we obtain

$$\sup_{j\geq 1} P(|S_{n+j} - S_n| \geq \epsilon) \leq \sup_{j\geq 1} P(|S_{n+j} - S| \geq \frac{\epsilon}{2}) + P(|S_n - S| \geq \frac{\epsilon}{2}).$$

As $n \to \infty$, both terms on the right-hand side tend to zero since $S_n \to S$ almost surely. Recall that $S_n \to S$ almost surely means that for every $\epsilon > 0$, $P(|S_n - S| > \epsilon/2) \to 0$ as $n \to \infty$. Hence, for $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that $P(|S_j - S| > \epsilon/2) < \delta$ for all $j \ge N_{\epsilon}$. Therefore, if $h > N_{\epsilon}$, then $\sup_{j \ge h} P(|S_j - S| > \epsilon/2) < \delta$. Thus, $\limsup_{h \to \infty} \sup_{j \ge h} P(|S_j - S| > \epsilon/2) = 0$, which proves (1).

We return to (5). Taking the limit as $n \to \infty$ in (5), we obtain:

$$\limsup_{n \to \infty} \sup_{j \ge 1} P(|S_{n+j} - S_n| > \epsilon) = 0 \quad (6)$$

By Etemadi's Maximal Inequality, we have

$$P(\max_{1 \le i \le n} |S_{n+j} - S_n| > \epsilon) \le 3 \max_{1 \le i \le n} P(|S_{n+j} - S_n| > \epsilon/3).$$

Let $n \to \infty$; we get

$$P(\sup_{j\geq 1} |S_{n+j} - S_n| > \epsilon) \leq 3 \sup_{j\geq 1} P(|S_{n+j} - S_n| > \epsilon/3) \to 0 \text{ as } n \to \infty \text{ by (6)}.$$

By the Squeeze Principle, (1) follows.

Theorem 22.8 (Three Series Theorem). Let (X_n) be independent random variables, and define $X_n^{(c)}$ as the truncated random variable at level c:

$$X_n^{(c)} = \begin{cases} X_n & \text{if } |X_n| \le c, \\ 0 & \text{if } |X_n| > c. \end{cases}$$

Here, c > 0.

- a) If $\sum X_n$ converges almost surely, then $\sum P(|X_n| > c)$, $\sum E[X_n^{(c)}]$, and $\sum Var[X_n^{(c)}]$ converge for all c > 0.
- b) If there exists c > 0 such that all three series $\sum P(|X_n| > c)$, $\sum E[X_n^{(c)}]$, and $\sum \text{Var}[X_n^{(c)}]$ converge, then $\sum X_n$ converges almost surely.

Proof. In order that $\sum X_n$ converge with probability 1 it is necessary that the three series converge for all positive c and sufficient that they converge for some positive c.

Proof of Sufficiency. Suppose that the series (22.13) converge, and put $m_n^{(c)} = E[X_n^{(c)}]$. By Theorem 22.6, $\sum (X_n - m_n^{(c)})$ converges with probability 1, and since $\sum m_n^{(c)}$ converges, so does $\sum X_n$. Since $P(X_n \neq X_n^{(c)} \text{ i.o.}) = 0$ by the first Borel-Cantelli lemma, it follows finally that $\sum X_n$ converges with probability 1.

§2.2 Weak Convergence

Recall (from MAT5170) let (Ω, \mathcal{F}, P) be a prob. space, and $X : \Omega \to \mathbb{R}$ r.v. i.e.

$$\{X \in A\} = \{\omega \in \Omega; X(\omega) \in A\} \in \mathcal{F} \text{ for any } A \in \mathcal{R}$$

Here \mathcal{R} is the class of Borel sets of \mathbb{R} .

• The law of X is a prob. measure on $(\mathbb{R}, \mathcal{R})$ given by:

$$\mu(A) := \mu_X(A) \stackrel{\text{def}}{=} P(X \in A) \quad \forall A \in \mathcal{R}$$

• The distribution function (c.d.f) of X is a function $F = F_X : \mathbb{R} \to [0,1]$ given by:

$$F(x) = P(X \le x)$$
 for all $x \in \mathbb{R}$
= $\mu((-\infty, x])$

where μ is the law of X

Note that:

$$\mu((-\infty, x)) = F(x^{-}) = \lim_{y \nearrow x} F(y)$$

$$\mu(\lbrace x \rbrace) = F(x) - F(x^{-})$$
 the jump of F at x

Properties of F:

- 1. F is non-decreasing
- 2. F is right-continuous
- 3. $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$

Definition 2.2 (Convergence in Distribution) Let $(X_n)_n$ be a sequence of random variables defined on probability spaces $(\Omega_n, \mathcal{F}_n, P_n)$ and X be a random variable defined on the probability space (Ω, \mathcal{F}, P) . We say that (X_n) converges in distribution to X, denoted as $X_n \stackrel{d}{\Longrightarrow} X$ or $X_n \stackrel{d}{\longrightarrow} X$, if for all points $x \in \mathbb{R}$ at which $F_X(x) = P(X \le x)$ is continuous, we have

$$F_{X_n}(x) = P_n(X_n \le x) \to F_X(x)$$
 as $n \to \infty$.

Remark: If $\mu_n(-\infty, x] = P_n(X_n \le x)$ and $\mu(-\infty, x] = P(X \le x)$ then $\mu_n \Rightarrow \mu$.

Example 2.3 (Example 25.1). Let X_n be a sequence of random variables in \mathcal{F} with $P(X_n = 1)$. Define

$$X_n = \begin{cases} n & \text{on } -n, \\ 0 & \text{otherwise.} \end{cases}$$

The c.d.f. of X_n is:

$$F_n(x) = P(X_n \le x) = \begin{cases} 0 & \text{if } x < n, \\ 1 & \text{if } x \ge n. \end{cases}$$

For any $x \in \mathbb{R}$ fixed,

$$\lim_{n \to \infty} F_n(x) = \begin{cases} 1 & \text{if } n > x, \\ 0 & \text{otherwise.} \end{cases} = 0.$$

So we will be tempted to say that $F_n \Rightarrow F$ where F(x) = 0 for all x. But F is **not** a distribution function! (since $\lim_{x\to\infty} F(x) \neq 1$)

Therefore, we cannot say $F_n \Rightarrow F$.

[&]quot;This implies that the cumulative distribution functions (c.d.f.'s) satisfy $F_{X_n}(x) \to F_X(x)$, and for the associated probability measures μ_n, μ , we have $\mu_n((-\infty, x]) \to \mu((-\infty, x])$ for all x such that $\mu(\{x\}) = 0$.

§3 January 15, 2024

§3.1 Convergence of Distributions, Probability, & Almost Sure

Definition 3.1 (Convergence in Distribution) Let $X_n : \Omega_n \to \mathbb{R}$ be a random variable defined on probability space $(\Omega_n, \mathcal{F}_n, P_n)$, and $X: \Omega \to \mathbb{R}$ be defined on probability space (Ω, \mathcal{F}, P) . We say that $(X_n)_n$ converges in distribution to X if

$$F_{X_n}(x) = P_n(X_n \le x) \to P(X \le x) = F_X(x)$$
 for all points $x \in \mathbb{R}$ s.t. $P(X = x) = 0$

We write $X_n \Rightarrow X$ or $X_n \xrightarrow{d} X$. **Remark:** If $\mu_n(-\infty, x] = P_n(X_n \le x)$ and $\mu(-\infty, x] = P(X \le x)$, then $\mu_n \Rightarrow \mu$.

Definition 3.2 Let (X_n) be random variables defined on the same probability space (Ω, \mathcal{F}, P) .

a) We say that (X_n) converges in probability to X if

$$\lim_{T \to \infty} P(|X_n - X| > \varepsilon) = 0 \quad \forall \varepsilon > 0.$$

We write $X_n \xrightarrow{P} X$.

b) We say that (X_n) converges to X almost surely (a.s.) or with probability 1 if

$$P(\lim_{n\to\infty} X_n = X) = 1.$$

We write $X_n \xrightarrow{\text{a.s.}} X$.

Theorem 3.3 (25.2) — We will prove the following two claims:

- a) If $X_n \to X$ a.s., then $X_n \xrightarrow{P} X$.
- b) If $X_n \xrightarrow{P} X$, then $X_n \xrightarrow{d} X$.

Proof. a) Fix $\varepsilon > 0$. Let $A_n = \{ \omega \in \Omega \mid |X_n(\omega) - X(\omega)| \ge \varepsilon \}$.

Recall Theorem 1.1:

$$P(\limsup A_n) < \limsup P(A_n) < \liminf P(A_n) < P(\liminf A_n)$$

It is enough to prove that

$$P(\limsup A_n) = 0 \quad (4)$$

Recall that:

$$\limsup A_n = \bigcap_{N=1}^{\infty} \bigcup_{n \ge N} A_n = \{ \omega \mid \exists N, \forall n \ge N, \omega \in A_n \}$$
$$= \{ \omega \mid \exists N, \forall n \ge N, |X_n(\omega) - X(\omega)| \ge \varepsilon \}$$

Note that:

$$(\limsup A_n)^c = \bigcup_{N=1}^{\infty} \bigcap_{n \ge N} A_n^c = \{ \omega \mid \forall \varepsilon > 0, \exists N, \forall n \ge N, |X_n(\omega) - X(\omega)| < \varepsilon \}$$

by De Morgan's Law, which implies $\{X_n\}$ converges to X hence $P((\limsup A_n)^c) = 1$. So (4) holds. Let $X \in \mathbb{R}$ be such that P(X = x) = 0. Let ε_0 be arbitrary. b)

1. Note that:

$$\{X_n \le x\} \subseteq \{|X_n - X| \ge \varepsilon\} \cup \{X \le x - \varepsilon\}$$

To see this, assume by contradiction that $|X_n - X| < \varepsilon$ and $X > x + \varepsilon$. Then $X_n - X > -\varepsilon$ and $X > x + \varepsilon$. Hence

$$X_n = (X_n - X) + X > -\varepsilon + (x + \varepsilon) = x.$$

This is a contradiction.

2. From 1, we deduce that:

$$P(X_n \le x) \le P(|X_n - X| \ge \varepsilon) + P(X \le x - \varepsilon)$$

which can be written as:

$$P(X \le x - \varepsilon) \le \lim_{n \to \infty} P(X_n \le x) \le \lim_{n \to \infty} P(X_n \le x + \varepsilon)$$
 for all $\varepsilon > 0$.

3. Finally, let $\varepsilon \to 0$. We get

$$P(X \le x) \le \lim_{n \to \infty} P(X_n \le x) \le P(X \le x)$$

Hence,

$$\lim_{n \to \infty} P(X_n \le x) = P(X \le x).$$

This completes the proof since P(X = x) = 0.

Theorem 3.4 (Convergence in Distribution Implies Convergence in Probability) — Let (X_n) be a sequence of random variables defined on the same probability space. If $X_n \xrightarrow{d} X$ for all $\omega \in \Omega$, where $a \in \mathbb{R}$, then $X_n \xrightarrow{P} X$.

Proof. Let $\varepsilon > 0$ be arbitrary. We want to prove that $P(|X_n - a| > \varepsilon) \to 0$ as $n \to \infty$. Note that

$$\{X_n - a > \varepsilon\} = \{X_n > a + \varepsilon\} \cup \{X_n < a - \varepsilon\} = \{X_n > a + \varepsilon\} \cup \{X_n < a - \varepsilon\}$$

and

$$P(|X_n - a| > \varepsilon) = P(X_n > a + \varepsilon) + P(X_n < a - \varepsilon) \quad (7)$$

We know that $X_n \xrightarrow{d} X$ i.e., $F_{X_n}(x) \to F_X(x)$ for all $x \in \mathbb{R}$ where P(X = x) = 0 (i.e., F_X is continuous at x).

Recall that

$$F_X(x) = P(X \le x) = \begin{cases} 0 & \text{if } x < a, \\ 1 & \text{if } x \ge a. \end{cases}$$

Hence

$$P(X_n \le x) \to 0$$
 for all $x < a$.

and

$$P(X_n > x) \to 1 \text{ for all } x > a.$$

We let $n \to \infty$ in (7):

$$P(X_n > a + \varepsilon) = 1 - P(X_n \le a + \varepsilon) = 1 - F_{X_n}(a + \varepsilon) \to 1 - 0 = 0,$$

$$P(X_n < a - \varepsilon) \le P(|X_n - a| > \varepsilon) \to 0.$$

In summary, both terms converge to 0. This proves that $P(|X_n - a| > \varepsilon) \to 0$ as $n \to \infty$.

Theorem 3.5 (Slutsky's Theorem) — If
$$X_n \xrightarrow{d} X$$
 and $Y_n - X_n \xrightarrow{P} 0$, then $Y_n \xrightarrow{d} X$.

Proof. Let F be the distribution function of X, i.e., $F(x) = P(X \le x)$, and let x be a continuity point of F, i.e., P(X = x) = 0. Let $\varepsilon > 0$ be arbitrary. Choose y' and y'' continuity points of F such that y' < x < y'' and

$$F(x) - F(y') < \varepsilon$$
 and $F(y'') - F(x) < \varepsilon$

where

$$\lim_{y \uparrow x} F(y) = F(x-) = F(x) \quad \text{and} \quad \lim_{y \downarrow x} F(y) = F(x+).$$

Let $\varepsilon > 0$ be such that y' is $x - \varepsilon$ and y'' is $x + \varepsilon$. Similarly to (5) and (6), it can be proved that:

$$P(X_n \le y') - P(|X_n - X| \ge \varepsilon) \le P(Y_n \le x) \le P(X_n \le y'') + P(|X_n - X| \ge \varepsilon)$$
 (exercise)

Taking $n \to \infty$, we get:

$$P(X \le y') = \lim_{n \to \infty} P(X_n \le x) = \lim_{n \to \infty} P(X_n \le y'') \le F(y'') = F(x) + \varepsilon$$

Finally, letting $\varepsilon \to 0$, we get:

$$F(x) = \lim_{n \to \infty} P(Y_n \le x) \le \lim_{n \to \infty} P(X_n \le x) \le F(x)$$

This proves that:

$$\lim_{n \to \infty} P(X_n \le x) = F(x).$$

§4 January 17, 2024

§4.1 Fundamental Theorems

Theorem 4.1 (Skorohod Representation Theorem) — Let $\{\mu_n\}$ and μ be probability measures on $(\mathbb{R}, \mathcal{R})$ such that $\mu_n \Rightarrow \mu$. Then there exists a probability space (Ω, \mathcal{F}, P) and random variables $(Y_n)_n$ on this space such that a:

- The distribution of Y_n is μ_n for all n, i.e., $P \circ Y_n^{-1} = \mu_n$ for all n.
- Distribution of Y is μ .
- $Y_n(\omega) \to Y(\omega)$ for all $\omega \in \Omega$.

^aRecall:

$$(P \circ X^{-1})(A) \stackrel{\text{def}}{=} P(X^{-1}(A)) \text{ where } X^{-1}(A) = \{\omega \in \Omega; X(\omega) \in A\}$$

Proof: Omitted.

Theorem 4.2 (Continuous Mapping Theorem) — Let $h : \mathbb{R} \to \mathbb{R}$ be a measurable function and D_h be the discontinuity points of h. Let $\{\mu_n\}, \mu$ be probability measures on $(\mathbb{R}, \mathcal{R})$ such that $\mu_n \Rightarrow \mu$. Assume that $\mu(D_h) = 0$. Then

$$\mu_n \circ h^{-1} \Rightarrow \mu \circ h^{-1}$$
.

Recall:

$$h: \mathbb{R} \to \mathbb{R} \quad \mu \circ h^{-1}(A) \stackrel{\text{def}}{=} \mu(h^{-1}(A))$$

where

$$h^{-1}(A) = \{x \in \mathbb{R}; h(x) \in A\}.$$

a

Proof. By Theorem 25.6 (Skorohod Representation Theorem), there exists a probability space $(\Omega', \mathcal{F}', P')$ and random variables $\{Y_n, Y\}$ on this space such that $P \circ Y_n^{-1} = \mu_n$ and $P \circ Y^{-1} = \mu$, and $Y_n(\omega) \to Y(\omega)$ for all $\omega \in \Omega'$.

Let $\omega \in \Omega'$ but $Y(\omega) \notin D_h$. Then h is continuous at $Y(\omega)$ and hence $h(Y_n(\omega)) \to h(Y(\omega))$. Denote by Ω'_{\sim} the set $\{\omega \in \Omega'; Y(\omega) \notin D_h\}$. Then

$$P(\Omega'_{\sim}) = P(\{\omega \in \Omega', Y(\omega) \notin D_h\}) = P(Y^{-1}(D_h^c)) = 1 - P(Y^{-1}(D_h)) = 1 - \mu(D_h) = 1.$$

and so $P(\Omega'_{\sim}) = 1$. This proves that $h(Y_n) \to h(Y)$ almost surely.

Hence $h(Y_n) \xrightarrow{d} h(Y)$ by Theorem 25.2 (a.s. convergence implies convergence in probability), which in turn implies convergence in distribution. This means that $P \circ (h(Y_n))^{-1} \to P \circ (h(Y))^{-1}$. This proves that $\mu_n \circ h^{-1} \to \mu \circ h^{-1}$.

Corollary 4.3

If $X_n \xrightarrow{d} X$ and $h : \mathbb{R} \to \mathbb{R}$ is a measurable function such that $P(X \in D_h) = 0$, then $h(X_n) \xrightarrow{d} h(X)$.

Proof. Note that $X_n \xrightarrow{d} X$ means that $\mu_n \to \mu$ where $P \circ X_n^{-1} = \mu_n$ for n and $P \circ X^{-1} = \mu$, and $P(X \in D_h) = (P \circ X^{-1})(D_h) = \mu(D_h)$. Then by Theorem 25.7, $\mu_n \circ h^{-1} \to \mu \circ h^{-1}$. So $h(X_n) \xrightarrow{d} h(X)$.

Law of
$$h_n$$
: Law of $h(X)$ (see below).

^aRemark: Note that $D_h \in \mathcal{R}$. See the proof in the textbook.

Recall:

$$P \circ (h(X))^{-1}(A) = P(\{\omega \in \Omega; h(X(\omega)) \in A\})$$

$$= P(\{\omega \in \Omega; X(\omega) \in h^{-1}(A)\})$$

$$= (P \circ X^{-1})(h^{-1}(A))$$

$$= \mu(h^{-1}(A))$$

$$= (\mu \circ h^{-1})(A).$$

Corollary 4.4

Suppose that $X_n \xrightarrow{P} a$, where $a \in \mathbb{R}$ is a constant. Let $h : \mathbb{R} \to \mathbb{R}$ be measurable and continuous at a. Then $h(X_n) \xrightarrow{P} h(a)$.

Proof. By Theorem 25.2, $X_n \xrightarrow{P} a$, hence, we let $X(\omega) = a$ for all $\omega \in \Omega$. Note that $\{X \in D_h\} = \{a \in D_h\} = \emptyset$, so $P(X \in D_h) = 0$. So by Corollary 1, $h(X_n) \xrightarrow{d} h(a)$. By Theorem 25.3, $h(X_n) \xrightarrow{P} h(a)$.

Example 4.5 (25.8). Suppose that $X_n \stackrel{d}{\to} X$ and $\{a_n\}, \{b_n\}$ are real numbers such that $a_n \to a \in \mathbb{R}$ and $b_n \to b \in \mathbb{R}$. Then

$$a_n X_n + b_n \xrightarrow{d} aX + b.$$

(See also problem 25.2 for a generalization.)

Proof. Recall Slutsky's Theorem: If $X_n \xrightarrow{d} X$, and $Y_n - X_n \xrightarrow{P} 0$, then $Y_n \xrightarrow{d} X$. Example 25.7: If $X_n \xrightarrow{d} X$ and $s_n \to 0$, then $s_n X_n \xrightarrow{d} 0$. Note that

$$(a_n X_n + b_n) - (aX + b) = (a_n - a)X_n + (b_n - b) \xrightarrow{d} 0$$
 (by ex. 25.7)

by TRS 25.5.

In addition, because $h: \mathbb{R} \to \mathbb{R}$ given by h(x) = ax + b is continuous since $X_n \xrightarrow{d} X$, we also have $h(X_n) \xrightarrow{d} h(X)$, i.e.,

$$a_n X_n + b_n \xrightarrow{d} aX + b.$$

In summary, we proved:

$$\begin{cases} (a_n X_n + b_n) - (aX + b) \xrightarrow{d} 0 & \text{(which is equivalent to } P \to 0) \\ a_n X_n + b_n \xrightarrow{d} aX + b. \end{cases}$$

By Slutsky's Theorem, we can take the sum and conclude that $a_n X_n + b_n \stackrel{d}{\to} aX + b$.

Theorem 4.6 (Portmanteau Theorem) — Let μ_n, μ be probability measures on \mathbb{R} . The following statements are equivalent:

- (i) $\mu_n \to \mu$
- (ii) $\int f d\mu_n \to \int f d\mu$ for any $f: \mathbb{R} \to \mathbb{R}$ which is continuous and bounded
- (iii) $\mu_n(A) \to \mu(A)$ for any set $A \in \mathbb{R}$ which is a continuity set, i.e., $\mu(\partial A) = 0$ where $\partial A = \bar{A} \setminus A^{\circ}$ is the boundary of A

Proof. (i) \Rightarrow (ii): By Skorohod Representation Theorem, there exists a probability space $(\Omega', \mathcal{F}', P')$ and random variables $\{Y_n, Y\}$ on this space such that:

$$P \circ Y_n^{-1} = \mu_n \text{ and } P \circ Y^{-1} = \mu,$$

and $Y_n(\omega) \to Y(\omega)$ for all $\omega \in \Omega'$.

Let $f: \mathbb{R} \to \mathbb{R}$ which is continuous and bounded. Then the discontinuity set of f is $D_f = \emptyset$, hence $\mu(D_f) = 0$.

Moreover, if $Y_n(\omega) \to Y(\omega)$ for all $\omega \in \Omega'$, then:

$$\int_{\mathbb{R}} f d\mu_n = \int_{\Omega'} f(Y_n) dP' \to \int_{\Omega'} f(Y) dP' = \int_{\mathbb{R}} f d\mu$$

by Bounded Convergence Theorem (Thm 16.5) and Change of Variables for $P\circ Y_n^{-1}$ and $P\circ Y^{-1}$.

Recall: Change of Variable (21.1)

$$\Omega \xrightarrow{P} \mathbb{R} \xrightarrow{f} \mathbb{R}, \quad f(X) = f \circ X$$

$$\int_{\Omega} f(X)dP = \int_{\mathbb{R}} fd(P \circ X^{-1})$$

We can also write this as:

$$\int_{\Omega} f(X(\omega))dP(\omega) = \int_{\mathbb{R}} f(x)d(P \circ X^{-1})(x)$$

§5 January 22, 2024

§5.1 Intergration to the limit

Theorem 5.1 (25.11) — If $X_n \stackrel{d}{\to} X$, then $E(|X_n|)$ is bounded above by $\liminf E(|X_n|)$. If $X_n \stackrel{d}{\to} X$, then $E(|X_n|) \le \liminf_{n \to \infty} E(|X_n|)$.

Proof. Let μ_n be the law of X_n . Then $\mu_n \to \mu$ where μ is the law of X.

By Skorohod Representation Theorem, there exists a probability space $(\Omega', \mathcal{F}', P')$ and random variables $\{Y_n, Y\}$ on this space such that:

$$P \circ Y_n^{-1} = \mu_n$$
 and $P \circ Y^{-1} = \mu$,

and $Y_n(\omega) \to Y(\omega)$ for all $\omega \in \Omega'$. By Fatou's Lemma, $E'(|Y|) \leq \liminf_{n \to \infty} E'(|Y_n|)$. (Here E' is expectation w.r.t. P') But E(|X|) = E'(|Y|) and $E(|X_n|) = E'(|Y_n|)$ for all n. Let μ_n be the law of X_n and μ the law of X. By the Skorohod Representation Theorem, there exists a probability space $(\Omega', \mathcal{F}', P')$ and random variables $\{Y_n\}$ and Y on this space such that Y_n converges to Y almost surely and the law of Y_n under P' is μ_n and the law of Y under P' is μ . By Fatou's Lemma, $E'(|Y|) \leq \liminf_{n \to \infty} E'(|Y_n|)$. Here E' denotes expectation with respect to P'. But $E(|X_n|) = E'(|Y_n|)$ and E(|X|) = E'(|Y|).

The Fatou Lemma (Thm 16.3) states that if $\{f_n\}$ are non-negative measurable functions, then $\int \liminf f_n d\mu \leq \liminf \int f_n d\mu$.

Recall (MAT5170) Fatou's Lemma (Thm.16.3). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space such that $\mu(\Omega) < \infty$. Assume (f_n) are measurable \mathbb{R} -valued functions such that $f_n \to f$ almost everywhere (w.r.t. μ).

If (f_n) is uniformly integrable and f is integrable, then

$$\int_{\Omega} f_n d\mu \to \int_{\Omega} f d\mu.$$

Theorem 5.2 (15.12) — If $X_n \xrightarrow{d} X$ and (X_n) is uniformly integrable, then X is integrable and $E(X_n) \to E(X)$.

Proof. Let μ_n be the law of X_n and μ the law of X. Then $\mu_n \to \mu$. By Skorohod Representation Theorem, there exists a probability space $(\Omega', \mathcal{F}', P')$ and random variables Y_n, Y on this space such that the law of Y_n under P' is μ_n and the law of Y under P' is μ , and $Y_n(\omega) \to Y(\omega)$ for all $\omega \in \Omega'$

By Fatou's Lemma, since $E(|X_n|)$ is uniformly integrable, it is bounded, hence $E(X_n) \to E(X)$.

Recall (MAT5170) Fatou's Lemma (Thm.16.3). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space such that $\mu(\Omega) < \infty$. Assume (f_n) are measurable \mathbb{R} -valued functions such that $f_n \to f$ almost everywhere (w.r.t. μ).

If (f_n) is uniformly integrable and f is integrable, then

$$\int_{\Omega} f_n d\mu \to \int_{\Omega} f d\mu.$$

Theorem 5.3 (15.12) — If $X_n \stackrel{d}{\to} X$ and (X_n) is uniformly integrable, then X is integrable and $E(X_n) \to E(X)$.

Proof. By Skorohod Representation Theorem (as in the proof of Th.25.11), there exists a probability space $(\Omega', \mathcal{F}', P')$ and random variables Y_n, Y on $(\Omega', \mathcal{F}', P')$ such that

- the law of Y_n is μ_n (where μ_n is the law of X_n),
- the law of Y is μ (where μ is the law of X),
- $Y_n(\omega) \to Y(\omega)$ for all $\omega \in \Omega'$.

Note that Y_n are uniformly integrable since

$$\int_{\Omega'} |Y_n| dP' = \int_{\{|Y| > \alpha\}} |Y_n| dP' = \int_{\{|X| > \alpha\}} |X_n| dP = \int_{\Omega} |X_n| dP$$

when $|Y_n| > \alpha$.

Change of variables (Th.16.13)

$$\int_{\Omega} f(X)dP = \int_{\mathbb{R}} f(z)d(P \circ X^{-1})(z) = \int_{\mathbb{R}} fd\mu$$

By Theorem 16.14, $E'(Y_n) \to E'(Y)$. This gives us the desired conclusion since:

$$E'(Y_n) = E(X_n)$$
 for all n and $E'(Y) = E(X)$.

Here E' is expectation with respect to P'.

§5.2 Characteristic Functions

Definition 5.4 a) Let μ be a probability measure on $(\mathbb{R}, \mathcal{R})$. The characteristic function of μ is:

$$\varphi(t) = \int_{-\infty}^{\infty} e^{itx} \mu(dx) = \int_{-\infty}^{\infty} \cos(tx) \mu(dx) + i \int_{-\infty}^{\infty} \sin(tx) \mu(dx)$$

for all $t \in \mathbb{R}$.

(Recall: e^{it} is defined as $\cos t + i \sin t$ for all $t \in \mathbb{R}$.)

b) Let $X : \Omega \to \mathbb{R}$ be a random variable on a probability space (Ω, \mathcal{F}, P) . Let μ be the law of X. Then the characteristic function of X is:

$$\varphi(t) = E(e^{itX}) = \int_{\mathbb{R}} e^{itx} dP = \int_{\mathbb{R}} e^{itx} \mu(dx)$$

Observation: Since $|e^{itx}|^2 = \cos^2(tx) + \sin^2(tx) = 1$,

$$|\varphi(t)| = \left| \int_{\mathbb{R}} e^{itx} \mu(dx) \right| \le \int_{\mathbb{R}} |e^{itx}| \mu(dx) = \mu(\mathbb{R}) = 1.$$

- 1. $\varphi(0) = E(e^{i \cdot 0}) = E(1) = 1$
- 2. φ is uniformly continuous on \mathbb{R} :

$$\begin{split} |\varphi(t+\varepsilon)-\varphi(t)| &= \left|\int_{\mathbb{R}} (e^{i(t+\varepsilon)x}-e^{itx})\mu(dx)\right| \\ &\leq \int_{\mathbb{R}} |e^{i(t+\varepsilon)x}-e^{itx}|\mu(dx) \\ &= \int_{\mathbb{R}} |e^{itx}|\cdot|e^{i\varepsilon x}-1|\mu(dx) \\ &= \int_{\mathbb{R}} |e^{i\varepsilon x}-1|\mu(dx) \to 0 \quad \text{by Bounded Convergence Theorem since} \\ &|e^{i\varepsilon x}-1| \leq |e^{i\varepsilon x}|+1=2 \quad \text{for all } x \text{ as } \varepsilon \to 0. \end{split}$$

§6 January 24, 2024

§6.1 Computing Characteristic Function

Example 6.1. Example: Let $X \sim N(0,1)$. We aim to compute $\varphi(t) = \mathbb{E}[e^{itX}]$ for $t \in \mathbb{R}$. The characteristic function $\varphi(t)$ is given by:

$$\varphi(t) = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} \mathbb{E}[X^k] \quad (1)$$

We use the property: for differentiable functions $g: \mathbb{R} \to \mathbb{R}$,

$$\mathbb{E}[g'(X)] = \mathbb{E}[Xg(X)] \quad (2)$$

Since

$$\mathbb{E}[g'(X)] = \int_{-\infty}^{\infty} g'(x) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{\infty} g(x) x \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \mathbb{E}[Xg(X)],$$

by integration by parts.

Applying (2) for $g(x) = x^k$, then $g'(x) = kx^{k-1}$. So (2) becomes:

$$\mathbb{E}[kX^{k-1}] = \mathbb{E}[X \cdot X^{k-1}] \quad (3)$$

Hence,

$$\mathbb{E}[X^k] = k\mathbb{E}[X^{k-1}] \quad \text{for } k \ge 1 \quad (4)$$

By symmetry of the standard normal distribution, all odd powers of X have an expected value of zero, i.e., $\mathbb{E}[X^k] = 0$ for k odd.

For even powers, using the property from before:

$$k = 2$$
: $\mathbb{E}[X^2] = 1$,
 $k = 4$: $\mathbb{E}[X^4] = 3 \cdot \mathbb{E}[X^2] = 3$,
 $k = 6$: $\mathbb{E}[X^6] = 5 \cdot \mathbb{E}[X^4] = 5 \cdot 3 = 15$,
and so on.

In general, for k=2n:

$$\mathbb{E}[X^{2n}] = 1 \cdot 3 \cdot 5 \cdots (2n-1) = (2n-1)!!$$
 (double factorial)

Characteristic Function: Returning to the characteristic function:

$$\varphi(t) = \sum_{n=0}^{\infty} \frac{(it)^{2n}}{(2n)!} \mathbb{E}[X^{2n}] = \sum_{n=0}^{\infty} \frac{(it)^{2n}}{(2n)!} (2n-1)!! = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{2^n n!}$$

where we used the relation $(2n)!/(2n-1)!! = 2^n n!$.

Recalling the Taylor series expansion for $e^{-t^2/2}$, we have:

$$e^{-t^2/2} = \sum_{n=0}^{\infty} \frac{(-1)^n (t^2/2)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{2^n n!}$$

Thus, $\varphi(t) = e^{-t^2/2}$.

Remark: The characteristic function of a random variable aX + b (where $a, b \in \mathbb{R}$) is given by:

$$\varphi_{aX+b}(t) = \mathbb{E}\left[e^{it(aX+b)}\right] = e^{itb}\mathbb{E}\left[e^{itaX}\right] = e^{itb}\varphi_X(at).$$

This expression uses the fact that the characteristic function of X evaluated at at can be modified

by a shift in the variable corresponding to the addition of b.

In particular, if a = -1 and b = 0, the characteristic function of -X is:

$$\varphi_{-X}(t) = \varphi_X(-t)$$
 for all $t \in \mathbb{R}$.

Next goal: Our next goal is to show that the characteristic function determines uniquely the law (or the distribution) of a random variable.

Theorem 6.2 (Theorem 26.2.) — Two parts of the theorem:

(a) Let μ be a probability measure on \mathbb{R} . Let $\varphi(t)$ be the characteristic function of μ . If $a,b\in\mathbb{R}$ are such that $\mu(\{a\})=0$ and $\mu(\{b\})=0$, then

$$\mu((a,b]) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt.$$

Convention: In this formula, the function $\frac{e^{-ita}-e^{-itb}}{it}$ is defined for t=0 to be equal to b-a (by l'Hopital's Rule).

(b) Let μ and ν be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. If μ and ν have the same characteristic function, then $\mu = \nu$.

Proof. (a) Let $I_T = \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} e^{itx} dt$. Then, by Fubini's theorem,

$$I_T = \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \left(\int_{-\infty}^{\infty} e^{itx} \mu(dx) \right) dt$$
$$= \int_{-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} e^{itx} dt \right) \mu(dx)$$
$$= \int_{-\infty}^{\infty} \phi_T(x) \mu(dx)$$

We can apply Fubini's Theorem since

$$\left| \frac{e^{-ita} - e^{-itb}}{it} \cdot e^{itx} \right| = \left| \frac{e^{-ita} - e^{-itb}}{it} \right| \cdot \left| e^{itx} \right| \le b - a$$

$$\left| e^{-ita} - e^{-itb} \right| = \left| e^{-ita} \left(1 - e^{it(b-a)} \right) \right| = \left| e^{-ita} \right| \cdot \left| 1 - e^{it(b-a)} \right| \le t(b-a)$$

And

$$\int_{-T}^{T} (b-a)\mu(dx)e^{itx} \le (b-a)(2T)\epsilon$$

(Note: It was crucial for this argument to work with [-T, T].) We compute $\phi_T(x)$ explicitly, as follows:

$$\phi_{T}(x) = \frac{1}{2\pi} \left[\int_{-T}^{T} \frac{e^{it(x-a)}}{it} dt - \int_{-T}^{T} \frac{e^{it(x-b)}}{it} dt \right]$$

$$= \frac{1}{2\pi} \left[-i \int_{-T}^{T} \frac{\cos(t(x-a))}{t} dt + i \int_{-T}^{T} \frac{\sin(t(x-a))}{t} dt \right]$$

$$+i \int_{-T}^{T} \frac{\cos(t(x-b))}{t} dt - i \int_{-T}^{T} \frac{\sin(t(x-b))}{t} dt$$

$$= \frac{1}{2\pi} \left[(-i) \cdot 2 \int_{0}^{T} \frac{\sin(t(x-a))}{t} dt + i \cdot i \cdot 2 \int_{0}^{T} \frac{\sin(t(x-b))}{t} dt \right]$$

$$= \frac{1}{\pi} \left[\int_0^T \frac{\sin(t(x-a))}{t} dt - \int_0^T \frac{\sin(t(x-b))}{t} dt \right]$$

Recall:

$$I_T = \int_{-\infty}^{\infty} \phi_T(x) \mu(dx)$$

We want to let $T \to \infty$, and apply the Dominated Convergence Theorem (D.C.T.) It can be proved that

$$\lim_{T \to \infty} \int_0^T \frac{\sin(\theta t)}{t} dt = \begin{cases} \frac{\pi}{2} & \text{if } \theta > 0\\ 0 & \text{if } \theta = 0\\ -\frac{\pi}{2} & \text{if } \theta < 0 \end{cases}$$

In our case,

$$\lim_{T \to \infty} \int_0^T \frac{\sin(t(x-a))}{t} dt = \begin{cases} -\frac{\pi}{2} & \text{if } x < a \\ 0 & \text{if } x = a \\ \frac{\pi}{2} & \text{if } x > a \end{cases}$$

$$\lim_{T \to \infty} \int_0^T \frac{\sin(t(x-b))}{t} dt = \begin{cases} -\frac{\pi}{2} & \text{if } x < b \\ 0 & \text{if } x = b \\ \frac{\pi}{2} & \text{if } x > b \end{cases}$$

Hence

$$\lim_{T \to \infty} \phi_T(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{1}{2} & \text{if } x = a \\ 1 & \text{if } a < x < b \\ \frac{1}{2} & \text{if } x = b \\ 0 & \text{if } x > b \end{cases}$$

Recall:

$$I_T = \int_{-\infty}^{\infty} \phi_T(x) \mu(dx)$$

We want to let $T \to \infty$, and apply Dominated Convergence Theorem (D.C.T.) It can be proved that

$$\lim_{T \to \infty} \int_0^T \frac{\sin(\theta t)}{t} dt = \begin{cases} \frac{\pi}{2} & \text{if } \theta > 0\\ 0 & \text{if } \theta = 0\\ -\frac{\pi}{2} & \text{if } \theta < 0 \end{cases}$$

Next time!

§7 January 29, 2024

§7.1 Characteristic Functions Continued

Corollary 7.1

Let μ be a probability measure with characteristic function φ . If

$$\int_{-\infty}^{\infty} \frac{|\varphi(t)|}{|t|} dt < \infty$$

then μ has a continuous density f given by:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi(t) dt$$
 (Inversion Formula)

Proof. Let $F(x) = \mu((-\infty, x])$ be the cumulative distribution function corresponding to μ . We have to prove that F is differentiable. Then, for $\varepsilon > 0$,

$$\frac{F(x+\varepsilon) - F(x)}{\varepsilon} = \frac{\mu((-\infty, x+\varepsilon]) - \mu((-\infty, x])}{\varepsilon} = \frac{\mu((x, x+\varepsilon])}{\varepsilon}$$
$$= \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-it(x+\varepsilon)} - e^{-itx}}{it\varepsilon} \varphi(t) dt$$

By Theorem 26.2, as $T \to \infty$, this limit exists and hence, the function F is differentiable. By D.C.T.,

$$\frac{F(x+\varepsilon) - F(x)}{\varepsilon} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itx} - e^{-it(x+\varepsilon)}}{it\varepsilon} \varphi(t) dt \quad (2)$$

To justify the application of D.C.T, we note:

$$\left| \frac{e^{-itx} - e^{-it(x+\varepsilon)}}{it\varepsilon} \right| = \left| \frac{e^{-itx}(1 - e^{-it\varepsilon})}{it\varepsilon} \right| \le |t| \text{ (since } |1 - e^{-it\varepsilon}| \le |t\varepsilon|)$$

Recall:

$$\left| e^{it} - \sum_{k=0}^{n} \frac{(it)^k}{k!} \right| \le \min\left\{ \frac{|t|^{n+1}}{(n+1)!}, \frac{2|t|^n}{n!} \right\}$$

$$\left|\frac{e^{-itx}-e^{-it(x+\varepsilon)}}{it\varepsilon}\varphi(t)\right|\leq \frac{|t\varepsilon|}{|\varepsilon|}|\varphi(t)|=|\varphi(t)| \text{ and } |\varphi(t)| \text{ is an integrable function.}$$

Note that (2) also holds for $\varepsilon < 0$. By another application of D.C.T.,

$$F'(x) = \lim_{\varepsilon \to 0} \frac{F(x+\varepsilon) - F(x)}{\varepsilon} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{\varepsilon \to 0} \frac{e^{-itx} - e^{-it(x+\varepsilon)}}{it\varepsilon} \varphi(t) dt$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi(t) dt$$

Note that f is continuous on \mathbb{R} :

$$\begin{split} |f(x+\varepsilon)-f(x)| &= \left|\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-it(x+\varepsilon)}\varphi(t)\,dt - \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-itx}\varphi(t)\,dt\right| \\ &= \left|\frac{1}{2\pi}\int_{-\infty}^{\infty}(e^{-it(x+\varepsilon)}-e^{-itx})\varphi(t)\,dt\right| \\ &\leq \frac{1}{2\pi}\int_{-\infty}^{\infty}|e^{-itx}(e^{-it\varepsilon}-1)||\varphi(t)|\,dt \\ &= \frac{1}{2\pi}\int_{-\infty}^{\infty}|e^{-it\varepsilon}-1|\cdot|\varphi(t)|\,dt \quad \text{by D.C.T. as } \varepsilon \to 0. \end{split}$$

1. If $X \sim N(0,1)$, then X has density $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, x \in \mathbb{R}$ and characteristic function:

 $\varphi(t) = e^{-\frac{t^2}{2}}$ (used the power series expansion).

2. If $X \sim \text{Uniform}(0,1)$ then X has density $f(x) = \begin{cases} 1 & \text{if } x \in [0,1], \\ 0 & \text{if } x \notin [0,1]. \end{cases}$ and characteristic function:

$$\varphi(t) = \int_0^1 e^{itx} dx = \frac{e^{it} - 1}{it} \quad \left(\text{or} \quad \frac{1}{it} (e^{it} - 1)' \right).$$

3. If $X \sim \text{Exponential}(\lambda)$, then X has density $f(x) = \lambda e^{-\lambda x} \mathbb{1}_{(0,\infty)}(x)$ and characteristic function:

$$\varphi(t) = \int_0^\infty e^{itx} e^{-\lambda x} dx = \left. \frac{e^{(it-\lambda)x}}{it-\lambda} \right|_0^\infty = \frac{1}{1-it}. \quad \text{(since the limit as } x \to \infty \text{ is 0)}.$$

4. If $X \sim \text{Double-Exponential}$, then X has density $f(x) = \frac{1}{2}e^{-|x|}, x \in \mathbb{R}$ and characteristic function:

$$\begin{split} \varphi(t) &= \int_{-\infty}^{\infty} e^{itx} \cdot \frac{1}{2} e^{-|x|} dx \\ &= \frac{1}{2} \left(\int_{0}^{\infty} e^{-(1-it)x} dx + \int_{-\infty}^{0} e^{-(1+it)x} dx \right) \\ &= \frac{1}{2} \left(\frac{1}{1-it} + \frac{1}{1+it} \right) \\ &= \frac{1}{2} \left(\frac{1+it+1-it}{1+t^2} \right) \\ &= \frac{1}{1+t^2}. \end{split}$$

5. If $X \sim \text{Cauchy}$, then X has density $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}, x \in \mathbb{R}$ and characteristic function:

$$\varphi(t) = \int_{-\infty}^{\infty} e^{itx} \frac{1}{\pi} \frac{1}{1+x^2} dx$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} e^{-itx} \frac{1}{1+x^2} dx$$

$$= \frac{1}{\pi} \left[e^{-itx} \frac{1}{1+(-it)^2} \right]$$

$$= \frac{1}{\pi} \frac{e^{-itx}}{1+t^2}.$$

(Note that the characteristic function of a Cauchy distribution is an exercise in some texts and can be derived using complex analysis techniques.)

Theorem 7.2 (Continuity Theorem) — Let $\{\mu_n\}$ and μ be probability measures on \mathbb{R} , with characteristic functions $\{\varphi_n\}$ and φ respectively. Then

$$\mu_n \to \mu$$
 if and only if $\varphi_n(t) \to \varphi(t)$ for all $t \in \mathbb{R}$.

Proof. Part 1 "Only If": Suppose that $\mu_n \to \mu$. Then, by Portmanteau theorem, we know that

$$\int f d\mu_n \to \int f d\mu$$
 for all $f: \mathbb{R} \to \mathbb{R}$ continuous and bounded.

In our case,

$$\varphi_n(t) = \int_{-\infty}^{\infty} e^{-itx} \mu_n(dx) = \int_{-\infty}^{\infty} \cos(tx) \mu_n(dx) + i \int_{-\infty}^{\infty} \sin(tx) \mu_n(dx)$$

implies that as $n \to \infty$,

$$\int_{-\infty}^{\infty} \cos(tx) \mu_n(dx) + i \int_{-\infty}^{\infty} \sin(tx) \mu_n(dx) \to \int_{-\infty}^{\infty} e^{-itx} \mu(dx) = \varphi(t).$$

Part 2 "If": We do not discuss this. It uses "tightness". Details are in the book.

§7.2 Central Limit Theorem

Theorem 7.3 (Lindeberg-Lévy Theorem) — Let $\{X_i\}_{i\geq 1}$ be a sequence of independent and identically distributed (i.i.d.) random variables, with $\mathbb{E}[X_i^2] < \infty$. We denote $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \operatorname{Var}(X_i)$. Let $S_n = \sum_{i=1}^n X_i$. Then

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} Z \sim N(0, 1).$$

Proof. Let $I = \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt$. Then, by Fubini's Theorem,

$$I_T = \frac{1}{2\pi} \int_{-T}^T \frac{e^{-ita} - e^{-itb}}{it} \int_{-\infty}^\infty e^{itx} \mu(dx) dt$$
$$= \int_{-\infty}^\infty \left(\frac{1}{2\pi} \int_{-T}^T \frac{e^{-it(a-x)} - e^{-it(b-x)}}{it} dt \right) \mu(dx)$$
$$= \int_{-\infty}^\infty \Phi_T(x) \mu(dx),$$

where $\Phi_T(x)$ is defined as $\frac{1}{2\pi} \int_{-T}^T \frac{e^{-it(a-x)} - e^{-it(b-x)}}{it} dt$. We can apply Fubini's Theorem since:

$$\left| \frac{e^{-ita} - e^{-itb}}{it} \cdot e^{itx} \right| = \left| \frac{e^{-it(a-x)} - e^{-it(b-x)}}{it} \right| \le b - a,$$
$$\left| e^{ita} - e^{itb} \right| = \left| e^{itb} (e^{it(a-b)} - 1) \right| \le |t(b-a)|,$$

which is integrable over t in the interval [-T,T] and measurable with respect to μ .

Theorem 7.4 (Central Limit Theorem for Triangular Arrays with Lyapunov condition) — For each $n \ge 1$, let $X_{n1}, X_{n2}, \ldots, X_{nn}$ be independent random variables with $\mathbb{E}(X_{ni}) = 0$ for all $i = 1, \ldots, n$ and

$$\sigma_{ni}^2 = \mathbb{E}(X_{ni}^2) < \infty \quad \forall i = 1, \dots, n.$$

Let $S_n = \sum_{i=1}^n X_{ni}$ and $\lambda_n^2 = \mathbb{E}(S_n^2) = \sum_{i=1}^n \sigma_{ni}^2$. Assume that $\lambda_n^2 \ge 0$ for all n. Suppose that there exists $\delta > 0$ such that

$$\mathbb{E}(|X_{ni}|^{2+\delta}) < \infty$$
 for all $i = 1, \dots, n$,

and

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{2+\delta}} \sum_{i=1}^n \mathbb{E}(|X_{ni}|^{2+\delta}) = 0 \quad \text{(Lyapunov condition)}.$$

Then

$$\frac{S_n}{\lambda_n} \xrightarrow{d} Z \sim N(0,1).$$

Proof. It suffices to show that the Lyapunov condition holds, and then we apply Theorem 27.2. We have:

$$\frac{1}{\lambda_n^2} \sum_{i=1}^n \int_{\{|X_{ni}| \ge \epsilon \lambda_n\}} X_{ni}^2 dP = \frac{1}{\lambda_n^2} \sum_{i=1}^n \mathbb{E} \left[X_{ni}^2 \mathbf{1}_{\{|X_{ni}| \ge \epsilon \lambda_n\}} \right]$$

$$\leq \frac{1}{\epsilon^\delta \lambda_n^{2+\delta}} \sum_{i=1}^n \mathbb{E} \left[|X_{ni}|^{2+\delta} \right]$$

$$= \frac{1}{\epsilon^\delta \lambda_n^{2+\delta}} \mathbb{E} \left[\sum_{i=1}^n |X_{ni}|^{2+\delta} \right] \to 0 \quad \text{by the Lyapunov condition.}$$

Hence the Lyapunov condition holds.

§8 February 7, 2024

§8.1 Section 33: Conditional Probability (continued)

Example 8.1. If P(B) > 0, $\mathcal{G} = \sigma(\{B\}) \to \{\emptyset, \Omega, B, B^c\}$

$$f(\omega) = \begin{cases} P(A \mid B) & \text{if } \omega \in B \\ P(A \mid B^c) & \text{if } \omega \in B^c \end{cases}$$

We prove that f satisfies conditions (i) and (ii) from the definition of $P(A \mid \mathcal{G})$, i.e.,

(i) f is \mathcal{G} -measurable (we checked this last time)

(ii)
$$\int_C f dP = P(A \cap G) \quad \forall G \in \mathcal{G}$$

$$\int_{G} f \, dP = P(A \cap G) \quad \forall G \in \mathcal{G} \tag{1}$$

Last time, we checked that (1) holds for $G = \emptyset$ and $G = \Omega$.

Assume that G = B. Then

$$\int_{B} f dP = \int_{B} (P(A \mid B) \mathbf{1}_{B} + P(A \mid B^{c}) \mathbf{1}_{B^{c}}) dP$$

$$= \int_{B} P(A \mid B) dP = P(A \mid B) P(B) = \frac{P(A \cap B)}{P(B)} P(B)$$

$$= P(A \cap B)$$

This proves (1) for G = B.

The fact that (1) also holds for $G = B^c$ is similar (exercise).

Example 8.2. Let (Ω, \mathcal{F}, P) be a probability space, $A \in \mathcal{F}$, and $\mathcal{G} = \sigma(\{B_i\}_{i \geq 1})$, where $\{B_i\}_{i \geq 1}$ is a partition of Ω , $B_i \in \mathcal{F}$, $P(B_i) > 0$ for all $i \geq 1$. We claim that

$$P(A \mid \mathcal{G}) = \sum_{i \ge 1} P(A \mid B_i) \mathbf{1}_{B_i} \quad \text{a.s.}$$
 (2)

We prove (2): Let $f = \sum_{i \geq 1} P(A \mid B_i) \mathbf{1}_{B_i}$. We check that f satisfies conditions (i) and (ii) from the definition of $P(A \mid \mathcal{G})$.

Condition (i): f is \mathcal{G} -measurable since $\mathbf{1}_{B_i}$ is \mathcal{G} -measurable for all $i \geq 1$.

Condition (ii): We have to check that

$$\int_{G} f \, dP = P(A \cap G) \quad \forall G \in \mathcal{G} \tag{1}$$

Note that $\mathcal{G} = \left\{ \bigcup_{j \in I} B_j \mid I \subseteq \{1, 2, \ldots\} \right\}$. Taking $G = \bigcup_{j \in I} B_j$, we have

$$\int_{G} f \, dP = \sum_{j \in I} \int_{B_{j}} f \, dP = \sum_{j \in I} \int_{B_{j}} P(A \mid B_{j}) dP = \sum_{j \in I} P(A \mid B_{j}) P(B_{j})$$
$$= \sum_{j \in I} P(A \cap B_{j}) = P\left(A \cap \left(\bigcup_{j \in I} B_{j}\right)\right) = P(A \cap G)$$

This proves (1).

Example 8.3. If $A \in \mathcal{G}$, then $P(A \mid \mathcal{G}) = \mathbf{1}_A$ a.s.

Recall:

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$$

Proof: We show that $\mathbf{1}_A$ satisfies conditions (i) and (ii) from the definition of $P(A \mid \mathcal{G})$.

- (i) $\mathbf{1}_A$ is \mathcal{G} -measurable since $A \in \mathcal{G}$.
- (ii) Let $G \in \mathcal{G}$ be arbitrary. Then

$$\int_{G} \mathbf{1}_{A} dP = \int_{\Omega} \mathbf{1}_{G \cap A} dP = P(G \cap A)$$

Example 8.4. If $\mathcal{G} = \{\emptyset, \Omega\}$, then $P(A \mid \mathcal{G}) = P(A)$ a.s.

Proof: Let f = P(A). We prove that f satisfies conditions (i) and (ii).

(i) f is \mathcal{G} -measurable since f is a constant random variable and so $\forall B \in \mathbb{R}$,

$$f^{-1}(B) = \{\omega \in \Omega; f(\omega) \in B\} = \begin{cases} \Omega & \text{if } P(A) \in B \\ \emptyset & \text{if } P(A) \notin B \end{cases} \in \mathcal{G}$$

(ii) We have to show that

$$\int_{G} f \, dP = P(A \cap G) \quad \forall G \in \mathcal{G} \tag{1}$$

We have two cases:

• $G = \emptyset$. Then

$$\int_G f \, dP = \int_{\emptyset} P(A) \, dP = 0 = P(A \cap \emptyset) = P(A \cap G)$$

• $G = \Omega$. Then

$$\int_{G} f \, dP = \int_{\Omega} P(A) \, dP = P(A) = P(A \cap \Omega) = P(A \cap G)$$

Definition 8.5 We say that event A is *independent* of the σ -field \mathcal{G} if A is independent of G, $\forall G \in \mathcal{G}$, i.e.,

$$P(A \cap G) = P(A) \cdot P(G) \quad \forall G \in \mathcal{G}$$

Observation: Any event A is independent of the trivial σ -field $\mathcal{G} = \{\emptyset, \Omega\}$. (Exercise)

Example 8.6. The event A is independent of $\mathcal{G} \iff P(A \mid \mathcal{G}) = P(A)$ a.s.

Proof: \Rightarrow Assume that A is independent of \mathcal{G} . Let f = P(A). We prove that f satisfies conditions (i) and (ii) from the definition of $P(A \mid \mathcal{G})$.

- (i) f = P(A) is a constant random variable. Hence, f is \mathcal{G} -measurable.
- (ii) We have to check that

$$\int_{C} f \, dP = P(A \cap G) \quad \forall G \in \mathcal{G} \tag{1}$$

Let $G \in \mathcal{G}$ be arbitrary. Then

$$\int_G f\,dP = \int_G P(A)\,dP = P(A)\int_G dP = P(A)\cdot P(G) = P(A\cap G)$$

So (1) holds.

 \Leftarrow Suppose that $P(A \mid \mathcal{G}) = P(A)$ a.s. Let $G \in \mathcal{G}$ be arbitrary. Then, by property (ii) of conditional probability, we know that

$$\int_G f \, dP = P(A \cap G), \quad \text{where } f = P(A)$$

Note that

$$\int_G f \, dP = \int_G P(A) \, dP = P(A) \cdot P(G)$$

So,
$$P(A) \cdot P(G) = P(A \cap G)$$
.

Definition 8.7 Let (Ω, \mathcal{F}, P) be a probability space, $A \in \mathcal{F}$. Let $X : \Omega \to \mathbb{R}$ be a random variable (i.e., X is \mathcal{F} -measurable).

Let $\mathcal{G} = \sigma(X) = \{X^{-1}(B); B \in \mathcal{B}(\mathbb{R})\}$ where

$$X^{-1}(B) = \{ \omega \in \Omega; X(\omega) \in B \} = \{ X \in B \}$$

We say that $P(A \mid \mathcal{G})$ is a version of the conditional probability of A given X, and we denote this by $P(A \mid X)$, i.e.,

$$P(A \mid X) := P(A \mid \sigma(\{X\}))$$

This means that:

$$\begin{cases} (i) & P(A \mid X) \text{ is } \sigma(X)\text{-measurable} \\ (ii) & \int_B P(A \mid X) \, dP = P(A \cap \{X \in B\}) \quad \forall B \in \mathcal{B}(\mathbb{R}) \end{cases}$$

Theorem 8.8 — Let (X, \mathcal{X}, μ) and (Y, \mathcal{Y}, ν) be measure spaces. μ and ν are σ -finite. $X \times Y = \{(x, y); x \in X, y \in Y\}.$

$$\mathcal{X} \otimes \mathcal{Y} = \sigma(\{A \times B; A \in \mathcal{X}, B \in \mathcal{Y}\})$$
 product σ -field

If $E \in \mathcal{X} \otimes \mathcal{Y}$, then

$$\begin{cases} E_x = \{ y \in Y; (x, y) \in E \} & \forall x \in X \\ E^y = \{ x \in X; (x, y) \in E \} & \forall y \in Y \end{cases}$$

Proposition 8.9. (i) If $E \in \mathcal{X} \otimes \mathcal{Y}$ then

$$\begin{cases} E_x \in \mathcal{Y} & \forall x \in X \\ E^y \in \mathcal{X} & \forall y \in Y \end{cases}$$

(ii) If $f: X \times Y \to \mathbb{R}$ is $\mathcal{X} \otimes \mathcal{Y}$ -measurable then

$$\begin{cases} y \mapsto f(x,y) \text{ is } \mathcal{Y}\text{-measurable} & \forall x \in X \\ x \mapsto f(x,y) \text{ is } \mathcal{X}\text{-measurable} & \forall y \in Y \end{cases}$$

Proposition 8.10. For any set $E \in \mathcal{X} \otimes \mathcal{Y}$

$$\begin{cases} x \mapsto \nu(E_x) \text{ is } \mathcal{X}\text{-measurable} \\ y \mapsto \mu(E^y) \text{ is } \mathcal{Y}\text{-measurable} \end{cases}$$

Define

$$\pi'(E) = \int_X \nu(E_x)\mu(dx)$$
 and $\pi''(E) = \int_Y \mu(E^y)\nu(dy)$

Then π' and π'' are measures on $(X \times Y, \mathcal{X} \otimes \mathcal{Y})$ and

$$\pi'(E) = \pi''(E) =: \pi(E) \quad \forall E \in \mathcal{X} \otimes \mathcal{Y}$$

Moreover, π is the only measure on $X \times Y$ s.t.

$$\pi(A \times B) = \mu(A) \cdot \nu(B) \quad \forall A \in \mathcal{X}, \forall B \in \mathcal{Y}$$

We denote $\pi = \mu \times \nu$ and we say that π is the product measure.

Theorem 8.11 — (i) If
$$f: X \times Y \to [0, \infty)$$
 is $\mathcal{X} \otimes \mathcal{Y}$ -measurable, then

$$g: X \to \mathbb{R}, \quad g(x) = \int_Y f(x, y) \nu(dy)$$
 is \mathcal{X} -measurable

$$h: Y \to \mathbb{R}, \quad h(y) = \int_X f(x,y) \mu(dx)$$
 is \mathcal{Y} -measurable

and

$$\int_{X} \left(\int_{Y} f(x,y)\nu(dy) \right) \mu(dx) = \int_{Y} \left(\int_{X} f(x,y)\mu(dx) \right) \nu(dy)$$

$$= \int_{X \times Y} f(x,y)(\mu \times \nu)(dx,dy) \tag{4}$$

(ii) If $f: X \times Y \to \mathbb{R}$ is $\mathcal{X} \otimes \mathcal{Y}$ -measurable and integrable w.r.t. $\mu \times \nu$, then

 $\begin{cases} g(x) \text{ is finite for } \mu\text{-almost all } x \in X, \quad g \text{ is \mathcal{X}-measurable} \\ h(y) \text{ is finite for ν-almost all } y \in Y, \quad h \text{ is \mathcal{Y}-measurable} \end{cases}$

and (4) holds.

§9 February 12, 2024

§9.1 Conditional probability continued

Theorem 9.1 — Let X and Y be independent random variables and $\mu = P \circ X^{-1}$, $\nu = P \circ Y^{-1}$. Then

a)

$$P((X,Y) \in B) = \int_{\mathbb{R}} P((x,Y) \in B) \mu(dx) \quad \forall B \in \mathbb{R}^2$$
 (2)

b)

$$P((X \in A, (X, Y) \in B)) = \int_{\mathbb{R}} P((x, Y) \in B) \mu(dx) \quad \forall A \in \mathbb{R} \quad \forall B \in \mathbb{R}^2$$
 (4)

Proof. a) Since X, Y are independent, the law of (X, Y) is $\mu \times \nu$, i.e.,

$$P \circ (X, Y)^{-1} = (P \circ X^{-1}) \times (P \circ Y^{-1}) = \mu \times \nu$$

Recall:

$$B_x = \{y \in \mathbb{R}; (x,y) \in B\}$$
 is the section of B at x

By Fubini's Theorem,

$$(\mu \times \nu)(B) = \int_{\mathbb{R}} \nu(B_x)\mu(dx) \tag{1}$$

Note that

$$(\mu \times \nu)(B) = P((X,Y) \in B)$$

$$\nu(B_x) = (P \circ Y^{-1})(B_x) = P(Y \in B_x) = P(\{\omega \in \Omega; Y(\omega) \in B_x\})$$

So

$$\nu(B_x) = P(\{\omega \in \Omega; (x, Y(\omega)) \in B\}) = P((x, Y) \in B)$$

Hence (1) gives our desired conclusion for a).

Proof. b) We write (1) for set B replaced by $B' = (A \times \mathbb{R}) \cap B$, relation (1) becomes:

$$(\mu \times \nu)(B') = \int_{\mathbb{R}} \nu(B'_x)\mu(dx) \tag{3}$$

Note that

$$(\mu \times \nu)(B') = (P \circ (X, Y)^{-1})(B') = P((X, Y) \in B') = P((X, Y) \in (A \times \mathbb{R}) \cap B) = P(X \in A, (X, Y) \in B) = LHS \text{ of } (4) = P(X, Y) \cap B' =$$

$$B_x' = \{y \in \mathbb{R}; (x,y) \in B'\} = \{y \in \mathbb{R}; x \in A \text{ and } (x,y) \in B\} = \begin{cases} \emptyset & \text{if } x \notin A \\ B_x & \text{if } x \in A \end{cases}$$

$$\nu(B_x') = \begin{cases} 0 & \text{if } x \notin A \\ \nu(B_x) & \text{if } x \in A \end{cases}$$

So

$$\nu(B'_x) = \begin{cases} 0 & \text{if } x \notin A \\ P((x,Y) \in B) & \text{if } x \in A \end{cases}$$

Relation (3) gives exactly (4).

Theorem 9.2 — Let X and Y be independent random variables, and $J \subseteq \mathbb{R}$. Consider the function

$$f(x) = P((x, Y) \in J)$$
 for all $x \in \mathbb{R}$.

a) Then

$$P((X,Y) \in J \mid X) = f(X)$$
 a.s.

b) Let $M = \max(X, Y)$. Then for all $m \in \mathbb{R}$,

$$P(M \le m \mid X) = \mathbf{1}\{X \le m\}P(Y \le m) \quad \text{a.s.}$$

Proof. a) We check that f(X) satisfies conditions (i) and (ii) from the definition of conditional probability. Here $\mathcal{G} = \sigma(X)$.

- (i) f(X) is $\sigma(X)$ -measurable. This is clear.
- (ii) Let $G \in \sigma(X)$ be arbitrary. Then $G = \{X \in H\}$ for some $H \in \mathcal{B}(\mathbb{R})$. Let $P \circ X^{-1} = \mu$.

$$\int_G f(X)\,dP = \int_{\{X\in H\}} f(X)\,dP = \int_H f(x)\,\mu(dx) \quad \text{(change of variable, Th 16.13)}$$

$$\begin{split} \int_G f(X) \, dP &= \int_\Omega f(X(\omega)) \mathbf{1}_G(\omega) \, dP(\omega) = \int_H f(x) \, \mu(dx) = \int_H P((x,Y) \in J) \, \mu(dx) \quad \text{(definition of } f) \\ &= P(X \in H, (X,Y) \in J) \quad \text{(by (4))} \end{split}$$

In summary, we proved that:

$$\int_{G} f(X) dP = P(A \cap G) \quad \forall G \in \sigma(X)$$

Proof. b) We use the result in part a). Note that

$$\{M \le m\} = \{\max(X, Y) \le m\} = \{X \le m, Y \le m\} = \{(X, Y) \in J\}$$

where $J = \{(x, y) \in \mathbb{R}^2; x \le m \text{ and } y \le m\}.$

By a),

$$P(M \le m \mid X) = P((X, Y) \in J \mid X) = f(X)$$
 a.s. (5)

where $f(x) = P((x, Y) \in J)$.

Let us calculate f(x):

$$f(x) = P((x,Y) \in J) = P(\{\omega \in \Omega; x \le m \text{ and } Y(\omega) \le m\})$$

$$= \begin{cases} 0 & \text{if } x > m \\ P(Y \le m) & \text{if } x \le m \end{cases} = \mathbf{1}_{\{x \le m\}} P(Y \le m)$$

Then

$$f(x) = \mathbf{1}_{\{x \le m\}} P(Y \le m)$$

Relation (5) becomes:

$$P(M \le m \mid X) = \mathbf{1}_{\{X \le m\}} P(Y \le m).$$

Recall: (MAT 5170): A family \mathcal{P} of subsets of a set Ω is called a π -system if it is closed under finite intersections, i.e., if $A, B \in \mathcal{P}$ then $A \cap B \in \mathcal{P}$.

If μ and ν are measures on (Ω, \mathcal{F}) and $\mu(A) = \nu(A)$ for all $A \in \mathcal{P}$, then $\mu = \nu$.

Theorem 9.3 — Let (Ω, \mathcal{F}, P) be a probability space, $\mathcal{G} \subseteq \mathcal{F}$ is a sub σ -field of \mathcal{F} , $A \in \mathcal{F}$. Assume that $\mathcal{G} = \sigma(\mathcal{P})$ where \mathcal{P} is a π -system and $\Omega = \bigcup_{i \geq 1} A_i$ with $A_i \in \mathcal{P}$. Let $f: \Omega \to [0, \infty)$ be a function which satisfies:

(i) f is \mathcal{G} -measurable and integrable

(ii)
$$\int_G f \, dP = P(A \cap G) \quad \forall G \in \mathcal{P}$$

Then $f = P(A \mid \mathcal{G})$ a.s.

Proof. Define

$$\mu(G) = \int_G f \, dP, \quad G \in \mathcal{G}$$
 $\nu(G) = P(A \cap G), \quad G \in \mathcal{G}$

Both μ and ν are measures on (Ω, \mathcal{G}) .

By (ii), $\mu(G) = \nu(G) \quad \forall G \in \mathcal{P}$.

Hence, by Theorem 10.4, $\mu(G) = \nu(G) \quad \forall G \in \mathcal{G}$. The conclusion follows since f satisfies the two conditions (i) and (ii) from the definition of $P(A \mid \mathcal{G})$.

The next result shows that $P(\cdot \mid \mathcal{G})$ satisfies the same properties as the classical probability measure P.

Theorem 9.4 — Theorem 33.2 (Properties of Conditional Probability) Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ -field.

- 1) $P(\emptyset \mid \mathcal{G}) = 0$ a.s. and $P(\Omega \mid \mathcal{G}) = 1$ a.s.
- 2) $P(A \mid \mathcal{G}) \ge 0$ a.s. and $P(A \mid \mathcal{G}) \le 1$ a.s. $\forall A \in \mathcal{F}$
- 3) If $\{A_n\}_{n\geq 1}$ are disjoint sets in \mathcal{F} , then

$$P\left(\bigcup_{n>1} A_n \mid \mathcal{G}\right) = \sum_{n>1} P(A_n \mid \mathcal{G})$$
 a.s.

4) If $A, B \in \mathcal{F}$ and $A \subseteq B$, then

$$P(B \setminus A \mid \mathcal{G}) = P(B \mid \mathcal{G}) - P(A \mid \mathcal{G})$$
 a.s.

$$P(A \mid \mathcal{G}) < P(B \mid \mathcal{G})$$
 a.s.

5) Inclusion-exclusion principle: For any $A_1, \ldots, A_n \in \mathcal{F}$,

$$P\left(\bigcup_{i=1}^{n} A_i \mid \mathcal{G}\right) = \sum_{i=1}^{n} P(A_i \mid \mathcal{G}) - \sum_{i < j} P(A_i \cap A_j \mid \mathcal{G}) + \ldots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n} A_i \mid \mathcal{G}\right) \quad \text{a.s.}$$

6) If $\{A_n\}_{n\geq 1}$ are subsets of \mathcal{F} such that $A_n \uparrow A \in \mathcal{F}$ (i.e., $A_n \subseteq A_{n+1}$ and $A = \bigcup_{n\geq 1} A_n$), then

$$P(A_n \mid \mathcal{G}) \uparrow P(A \mid \mathcal{G})$$
 a.s.

Similarly, if $A_n \downarrow A$ (i.e., $A_n \supseteq A_{n+1}$ and $A = \bigcap_{n \ge 1} A_n$), then

$$P(A_n \mid \mathcal{G}) \downarrow P(A \mid \mathcal{G})$$
 a.s.

7) If $A \in \mathcal{F}$ is such that P(A) = 1, then $P(A \mid \mathcal{G}) = 1$ a.s. If $A \in \mathcal{F}$ is such that P(A) > 0, then $P(A \mid \mathcal{G}) > 0$ a.s.

Proof. 1) 1 is trivial: f = 0 satisfies conditions (i) and (ii) from the definition of $P(\emptyset \mid \mathcal{G})$.

$$f = 1$$
 satisfies $P(\Omega \mid \mathcal{G})$

2) Use the following result: If $f:\Omega\to\mathbb{R}$ is a \mathcal{G} -measurable function and

$$\int_{G} f \, dP \ge 0 \quad \forall G \in \mathcal{G} \text{ then } f \ge 0 \text{ a.s.} \quad \text{(Section 15)}$$

In our case, $f = P(A \mid \mathcal{G})$ satisfies:

$$\int_G f \, dP = P(A \cap G) \ge 0 \quad \forall G \in \mathcal{G}. \text{ Hence, } f \ge 0 \text{ a.s.}$$

Similarly, the function $f' = 1 - P(A \mid \mathcal{G})$ satisfies:

$$\int_G f' \, dP = \int_G (1 - P(A \mid \mathcal{G})) \, dP = P(G) - \int_G P(A \mid \mathcal{G}) \, dP = P(G) - P(A \cap G) = P(G \setminus A) \ge 0$$

Hence $f' \geq 0$ a.s., that is $P(A \mid \mathcal{G}) \leq 1$ a.s.

- 3) Let $f = \sum_{n \geq 1} P(A_n \mid \mathcal{G})$. We check that f satisfies conditions (i) and (ii) from the definition of $P(\bigcup_{n \geq 1} A_n \mid \mathcal{G})$.

 (i) f is \mathcal{G} -measurable (limit of a seq. of \mathcal{G} -measurable functions is \mathcal{G} -measurable).

 (ii) Let $G \in \mathcal{G}$ be arbitrary, and denote $A = \bigcup_{n \geq 1} A_n$. We want to prove that:

$$\int_{G} f \, dP = P(A \cap G) \tag{7}$$

$$\int_{G} f \, dP = \int_{G} \sum_{n>1} P(A_n \mid \mathcal{G}) \, dP \ge 0 \quad \text{(Corollary to Theorem 16.7)}$$

$$\int_{G} \sum_{n \geq 1} P(A_n \mid \mathcal{G}) dP = \sum_{n \geq 1} \int_{G} P(A_n \mid \mathcal{G}) dP = \sum_{n \geq 1} P(A_n \cap G) \quad \text{(by condition (ii) in the def. of } P(A_n \mid \mathcal{G}))$$

$$= P\left(\bigcup_{n\geq 1} (A_n \cap G)\right) = P\left(\left(\bigcup_{n\geq 1} A_n\right) \cap G\right) = P(A \cap G)$$

This proves (7).

4) - 7) Exercise.

§10 February 14, 2024

§10.1 Conditional Distributions continued

Theorem 10.1 — Let (Ω, \mathcal{F}, P) be a probability space, $X : \Omega \to \mathbb{R}$ is a random variable, and $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ -field. Then there exists a function $\mu(H, \omega)$ defined for any $H \in \mathcal{B}(\mathbb{R}), \omega \in \Omega$ such that the following conditions hold:

- (a) $\mu(\cdot, \omega)$ is a probability measure on \mathbb{R} , $\forall \omega \in \Omega$
- (b) $\mu(H,\cdot)$ is a version of $P(X \in H \mid \mathcal{G}), \forall H \in \mathcal{B}(\mathbb{R})$

We say that μ is the conditional distribution of X given \mathcal{G} . In particular, if $\mathcal{G} = \sigma(Y)$, we say that μ is the conditional distribution of X given Y.

For each $r \in \mathbb{Q}$, let $F(r, \cdot)$ be a version of $P(X \leq r \mid \mathcal{G})$, i.e.,

$$F(r,\omega) = P(X \le r \mid \mathcal{G})(\omega)$$
 for P -almost all $\omega \in \Omega$.

Properties of F:

1) If $r, s \in \mathbb{Q}$ with $r \leq s$, then $F(r, \omega) \leq F(s, \omega)$ with probability 1.

$$P(X \le r \mid \mathcal{G})(\omega) \le P(X \le s \mid \mathcal{G})(\omega)$$
 since $\{X \le r\} \subseteq \{X \le s\}$.

Let $E_{r,s} = \{ \omega \in \Omega; F(r,\omega) \leq F(s,\omega) \}.$

Then $E_{r,s} \in \mathcal{G}$ and $P(E_{r,s}) = 1$.

2) For every $r \in \mathbb{Q}$ fixed,

$$\lim_{n \to \infty} F\left(r + \frac{1}{n}, \omega\right) = \lim_{n \to \infty} P\left(X \le r + \frac{1}{n} \mid \mathcal{G}\right)(\omega) = P(X \le r \mid \mathcal{G})(\omega) = F(r, \omega)$$

by property 6) in Theorem 33.2.

Let
$$E_r = \{\omega \in \Omega; \lim_{n \to \infty} F\left(r + \frac{1}{n}, \omega\right) = F(r, \omega)\}$$
. Then $E_r \in \mathcal{G}$ with $P(E_r) = 1$.

$$\lim_{r \to \infty} F(r, \omega) = \lim_{r \to \infty} P(X \le r \mid \mathcal{G})(\omega) = P(\Omega \mid \mathcal{G})(\omega) = 1 \quad \text{with probability 1}$$

$$\{\{X \leq r\}\}_{r \in \mathbb{O}} \uparrow \Omega$$

Let $D_1 = \{ \omega \in \Omega; \lim_{r \to \infty} F(r, \omega) = 1 \}$. Then $D_1 \in \mathcal{G}$ and $P(D_1) = 1$.

$$\lim_{r \to -\infty} F(r, \omega) = \lim_{r \to -\infty} P(X \le r \mid \mathcal{G})(\omega) = P(\emptyset \mid \mathcal{G})(\omega) = 0 \quad \text{with probability 1}$$

$$\{\{X \leq r\}\}_{r \in \mathbb{O}} \downarrow \emptyset$$

Let $D_2 = \{\omega \in \Omega; \lim_{r \to -\infty} F(r, \omega) = 0\}$. Then $D_2 \in \mathcal{G}$ and $P(D_2) = 1$. Let $S = \left(\bigcap_{r \in \mathbb{Q}} E_r\right) \cap \left(\bigcap_{r,s \in \mathbb{Q}} E_{r,s}\right) \cap D_1 \cap D_2$. Then $S \in \mathcal{G}$ and P(S) = 1.

• For $\omega \in S$, extend $F(r,\omega)$ to \mathbb{R} by setting

$$\bar{F}(x,\omega) := \inf_{r>x,r\in\mathbb{Q}} F(r,\omega)$$

Clearly, if $x \in \mathbb{Q}$ then $\bar{F}(x, \omega) = F(x, \omega)$.

- For $\omega \notin S$, let $\bar{F}(\cdot, \omega) := F^*$ where F^* is a fixed cumulative distribution function on \mathbb{R} .
- For $\omega \in S$, we check that $\bar{F}(\cdot, \omega) : \mathbb{R} \to [0, 1]$ is a probability distribution function:
 - (a) right-continuity: $\lim_{n\to\infty} \bar{F}(x_n,\omega) = \bar{F}(x,\omega)$ if $x_n \uparrow x$
 - (b) non-decreasing: if $x \leq y$, then $\bar{F}(x,\omega) \leq \bar{F}(y,\omega)$

(c) $\lim_{x\to\infty} \bar{F}(x,\omega) = 1$

(d)
$$\lim_{x\to-\infty} \bar{F}(x,\omega) = 0$$

Hence, by Theorem 1.2, there exists a unique probability measure $\bar{\mu}(\cdot,\omega)$ on \mathbb{R} such that

$$\bar{\mu}((-\infty, x], \omega) = \bar{F}(x, \omega) \quad \forall x \in \mathbb{R}$$

• For $\omega \notin S$, let $\bar{\mu}^*$ be the probability measure corresponding to F^* , i.e.

$$\bar{\mu}^*((-\infty, x]) = F^*(x) = F^*(x) \quad \forall x \in \mathbb{R}$$

Define

$$\mu(H,\omega) = \begin{cases} \bar{\mu}(H,\omega) & \text{if } \omega \in S\\ \bar{\mu}^*(H) & \text{if } \omega \notin S \end{cases}$$

Then $\mu(H,\omega)$ is a probability measure on $\mathbb{R} \ \forall \omega \in \Omega$, i.e. condition (a) holds.

We now prove that μ satisfies condition (b):

We will prove that $\mu(H,\cdot) = P(X \in H \mid \mathcal{G})$ a.s. by checking that $\mu(H,\cdot)$ satisfies conditions (i) and (ii) from the definition of $P(X \in H \mid \mathcal{G})$.

(i) We have to prove that $\mu(H,\cdot)$ is \mathcal{G} -measurable, $\forall H \in \mathcal{B}(\mathbb{R})$.

Let $\mathcal{L} = \{ H \in \mathcal{B}(\mathbb{R}); \mu(H, \cdot) \text{ is } \mathcal{G}\text{-measurable} \}$ is a λ -system, i.e.

- 1) $\mathbb{R} \in \mathcal{L}$
- 2) If $H \in \mathcal{L}$ then $H^c \in \mathcal{L}$
- 3) If $(H_n)_{n\geq 1}$ are disjoint then $\bigcup_{n\geq 1} H_n \in \mathcal{L}$

 $\mathcal{P} = \{(-\infty, r]; r \in \mathbb{Q}\}$ is a π -system, i.e.

• if $A_1, A_2, \ldots, A_n \in \mathcal{P}$ then $A_1 \cap A_2 \cap \ldots \cap A_n \in \mathcal{P}$

 $\mathcal{P} \subseteq \mathcal{L}$ since $\mu((-\infty, r], \cdot) = F(r, \cdot) = P(X \le r \mid \mathcal{G})(\cdot)$ if $\omega \in S$, and hence $\mu((-\infty, r], \cdot) = P(X \le r \mid \mathcal{G})$ with probability 1.

Because $P(X \leq r \mid \mathcal{G})$ is \mathcal{G} -measurable, it follows that $\mu((-\infty, r], \cdot)$ is \mathcal{G} -measurable.

To summarize, we have:

$$\mathcal{L} = \lambda$$
-system

$$\mathcal{P} = \pi$$
-system

 $\mathcal{P} \subset \mathcal{L}$

Then, by Dynkin's π - λ theorem (Theorem 3), it follows that:

$$\sigma(\mathcal{P}) = \mathcal{L}$$

Hence,

$$\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{P}) \subseteq \mathcal{L} \subseteq \mathcal{B}(\mathbb{R})$$
 i.e. $\mathcal{L} = \mathcal{B}(\mathbb{R})$

This means that $\mu(H,\cdot)$ is \mathcal{G} -measurable $\forall H \in \mathcal{B}(\mathbb{R})$.

(ii) We want to prove that

$$P\left(\left\{X\in H\right\}\cap G\right) = \int_{G} \mu(H,\omega)P(d\omega) \quad \forall G\in\mathcal{G}, \forall H\in\mathcal{B}(\mathbb{R})$$

$$P\left(\left\{X\in H\right\}\cap G\right) = \int_{G} \mu(H,\omega)P(d\omega) \quad \forall G\in\mathcal{G}, \forall H\in\mathcal{B}(\mathbb{R})$$

Fix $G \in \mathcal{G}$. Define

$$\varphi_1(H) = P(\{X \in H\} \cap G)$$

$$\varphi_2(H) = \int_G \mu(H, \omega) P(d\omega)$$

Note that $\varphi_1(H) = \varphi_2(H) \forall H \in \mathcal{P}$, since if $H = (-\infty, r]$ with $r \in \mathbb{Q}$

$$\varphi_1((-\infty, r]) = P(\{X \le r\} \cap G)$$

$$\varphi_2((-\infty, r]) = \int_G \mu((-\infty, r], \omega) P(d\omega)$$

$$\varphi_2((-\infty, r]) = \int_G \mu((-\infty, r], \omega) P(d\omega) = \int_G F(r, \omega) P(d\omega) = \int_G P(X \le r \mid \mathcal{G})(\omega) P(d\omega)$$

$$= P(X \le r \mid \mathcal{G}) P(d\omega) = P(\{X \le r\} \cap G)$$

By the definition of conditional probability.

Since \mathcal{P} is a π -system, $\varphi_1(H) = \varphi_2(H) \forall H \in \mathcal{B}(\mathbb{R})$.

$$\begin{split} \varphi_1((-\infty,r]) &= P(\{X \leq r\} \cap G) \\ \varphi_2((-\infty,r]) &= \int_G \mu((-\infty,r],\omega) P(d\omega) = \int_G F(r,\omega) P(d\omega) = \int_G P(X \leq r \mid \mathcal{G})(\omega) P(d\omega) \\ &= P(X \leq r \mid \mathcal{G}) P(d\omega) = P(\{X \leq r\} \cap G) \end{split}$$

By the definition of conditional probability.

Since \mathcal{P} is a π -system, $\varphi_1(H) = \varphi_2(H) \forall H \in \mathcal{B}(\mathbb{R})$.

$$P(\{X \in H\} \cap G) = \int_{G} \mu(H, \omega) P(d\omega) \quad \forall G \in \mathcal{G}, \forall H \in \mathcal{B}(\mathbb{R}) \quad \Box$$

Example 10.2. Let X, Y be r.v.'s on (Ω, \mathcal{F}, P) s.t. the law of (X, Y) has density f(x, y), i.e.

$$P((X,Y) \in A) = \int_{A} f(x,y) \, dx \, dy \quad \forall A \subseteq \mathbb{R}^{2}$$

Let $f_X(x) = \int_{\mathbb{R}} f(x, y) dy$ be the marginal density of X:

$$P(X \in B) = \int_{B} f_X(x) dx \quad \forall B \subseteq \mathbb{R}$$

Define

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$$
 if $f_X(x) \neq 0$

Observation:

$$\int_{\mathbb{R}} f_{Y|X}(y \mid x) \, dy = 1 \quad \text{(exercise)}$$

Define

$$Q(x,H) = \begin{cases} \int_H f_{Y|X}(y \mid x) \, dy & \text{if } f_X(x) \neq 0 \\ Q^*(H) & \text{if } f_X(x) = 0 \end{cases}$$

Set

$$\mu(H,\omega) = Q(X(\omega),H)$$

Claim: $\mu(H,\omega)$ is the conditional distribution of Y given X.

Proof of this claim: We check properties a) and b) of Theorem 33.3

- a) $\mu(\cdot,\omega) = Q(X(\omega),\cdot)$ is indeed a probability measure $\forall \omega \in \Omega$
- b) We have to check that $\mu(H,\cdot)$ is a version of $P(Y \in H \mid X)$, i.e.

$$\mu(H,\cdot) = P(Y \in H \mid X)$$
 a.s.

For this, we have to check that conditions (i) and (ii) are verified:

(i) $\mu(H,\cdot) = Q(X(\cdot),H)$ is $\sigma(X)$ -measurable. This is clear since Q is a function of X.

(ii) We have to prove that

$$P(\{Y \in H\} \cap G) = \int_{G} \mu(H, \omega) P(d\omega) \quad \forall G \in \sigma(X) = \mathcal{G} \quad (2)$$

Let us prove (2). Let $G=\{X\in E\}\in\sigma(X)$ be arbitrary, with $E\in\mathcal{B}(\mathbb{R}).$ Then

Let
$$G = \{X \in E\} \in \sigma(X)$$
 be arbitrary, with $E \in \mathcal{R}$.
$$\int_G \mu(H,\omega) P(d\omega) = \int_{\{X \in E\}} Q(X(\omega),H) P(d\omega)$$
$$= \int_{\{X \in E\}} 1_E(X(\omega)) Q(X(\omega),H) P(d\omega)$$
$$= \int_\Omega 1_E(X(\omega)) Q(X(\omega),H) P(d\omega)$$
$$= \int_E Q(x,H) (P \circ X^{-1})(dx) \quad \text{(change of variables theorem 16.13)}$$
$$= \int_E Q(x,H) f_X(x) dx$$
$$= \int_{E \cap \{f_X(x) \neq 0\}} Q(x,H) f_X(x) dx$$
$$= \int_{E \cap \{f_X(x) \neq 0\}} \left(\int_H f_{Y|X}(y|x) dy \right) f_X(x) dx$$
$$= \int_{E \cap \{f_X(x) \neq 0\}} \int_H f(x,y) dy dx$$
$$= \int_E \int_H f(x,y) dy dx$$
$$= P((X,Y) \in E \times H)$$

 $= P(\{X \in E\} \cap \{Y \in H\})$ (by definition of E and H)

§11 February 28, 2024

§11.1 Conditional Expectation

- * Recall: We say that a r.v. $P(A|\mathcal{G})$ is the conditional probability of A given \mathcal{G} if:
 - 1. $P(A|\mathcal{G})$ is \mathcal{G} -measurable and integrable
 - 2. $\int_G P(A|\mathcal{G}) dP = P(A \cap G) \quad \forall G \in \mathcal{G}$

Note that $P(A \cap G) = \int_G \mathbf{1}_A dP$, (ii) can be stated as:

$$\int_G P(A|\mathcal{G}) \, dP = \int_G \mathbf{1}_A \, dP \quad \forall G \in \mathcal{G}$$

Theorem 11.1 — Let (Ω, \mathcal{F}, P) be a probability space, $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ -field, and $X : \Omega \to \mathbb{R}$ an integrable r.v. Then, there exists a r.v. $g : \Omega \to \mathbb{R}$ such that:

- 1. g is \mathcal{G} -measurable and integrable
- 2. $\int_G g \, dP = \int_G X \, dP \quad \forall G \in \mathcal{G}$

If $g': \Omega \to \mathbb{R}$ is another r.v. satisfying (i) and (ii), then g = g' a.s., i.e.

$$P(\{\omega \in \Omega; g(\omega) = g'(\omega)\}) = 1$$

We say that g is a (version of) the conditional expectation of X given \mathcal{G} , and we denote

$$g = \mathbb{E}(X|\mathcal{G})$$

Proof. Proof: Existence Case 1, $X \ge 0$

Define

$$\mathcal{D}(G) = \int_G X \, dP \quad \text{for all } G \in \mathcal{G}.$$

Clearly, \mathcal{D} is a measure on (Ω, \mathcal{G}) .

Note that \mathcal{D} is a finite measure:

$$\mathcal{D}(\Omega) = \int_{\Omega} X \, dP = \mathbb{E}(X) < \infty.$$

Moreover, \mathcal{D} is absolutely continuous with respect to P:

if
$$P(G) = 0$$
 then $\mathcal{D}(G) = 0$.

By the Radon-Nikodym Theorem (Theorem 32.3), there exists a \mathcal{G} -measurable function $g:\Omega\to\mathbb{R}$ such that:

$$\mathcal{D}(G) = \int_G g \, dP \quad \forall G \in \mathcal{G}.$$

From (1) and (2),

$$\int_{G} X dP = \int_{G} g dP \quad \forall G \in \mathcal{G}.$$

Thus, g is clearly integrable. So, g satisfies (i) and (ii).

Proof. Case 2: X is arbitrary

Recall that any $a \in \mathbb{R}$ can be written as:

$$a = a^{+} - a^{-}$$
 where $a^{+} = \begin{cases} a & \text{if } a \ge 0 \\ 0 & \text{if } a < 0 \end{cases}$, $a^{-} = \begin{cases} 0 & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$

(Note: $a^+ \ge 0, a^- \ge 0$)

Hence, for $X(\omega) \in \mathbb{R}$, we have:

$$X(\omega) = X^{+}(\omega) - X^{-}(\omega) \quad \forall \omega \in \Omega.$$

Both X^+ and X^- are non-negative r.v.'s. By Case 1,

• there exists a function $g_1: \Omega \to \mathbb{R}$ \mathcal{G} -measurable and integrable s.t.

$$\int_{G} g_1 dP = \int_{G} X^+ dP \quad \forall G \in \mathcal{G}$$
 (3)

• there exists a function $g_2: \Omega \to \mathbb{R}$ \mathcal{G} -measurable and integrable s.t.

$$\int_{G} g_2 dP = \int_{G} X^{-} dP \quad \forall G \in \mathcal{G}$$
 (4)

Take the difference between (3) and (4), we get:

$$\int_{G} (g_1 - g_2) dP = \int_{G} (X^+ - X^-) dP = \int_{G} X dP \quad \forall G \in \mathcal{G}.$$

Taking $g = g_1 - g_2$, we see that g satisfies (i) and (ii).

Lemma 11.2 — Lemma 1 If X is \mathcal{G} -measurable, then $\mathbb{E}(X|\mathcal{G}) = X$ a.s. (and integrable)

Proof. It is clear that g = X satisfies (ii) and (iii) of Theorem 1. \square

Lemma 11.3 — Lemma 2 If X is independent of \mathcal{G} (i.e. $\{X \in B\}$ and G are independent for any $B \in \mathcal{R}, G \in \mathcal{G}$), then $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(X)$ a.s.

Proof. We check that $g = \mathbb{E}(X)$ satisfies (i) and (ii) from Theorem 1:

(i) $g = \mathbb{E}(X)$ is a constant r.v., so it is measurable w.r.t. any σ -field, and in particular it is \mathcal{G} -measurable. Clearly, g is integrable.

$$\int_G g \, dP = \int_G \mathbb{E}(X) \, dP = \mathbb{E}(X) \int_G dP = \mathbb{E}(X) \cdot P(G) \quad \forall G \in \mathcal{G}.$$

$$\int_G X \, dP = \int_\Omega 1_G X \, dP = \mathbb{E}(1_G X) = \mathbb{E}(1_G) \cdot \mathbb{E}(X) = P(G) \cdot \mathbb{E}(X) \quad \text{for any } G \in \mathcal{G}.$$

(independent since X is indep. of \mathcal{G})

Example 11.4. Let X be an integrable r.v. on (Ω, \mathcal{F}, P) and $\mathcal{G} = \sigma(\{B_i\}_{i \geq 1})$ where $\{B_i\}_{i \geq 1}$ is a partition of Ω , with $P(B_i) > 0$. Recall that an arbitrary set in \mathcal{G} is of the form $G = \bigcup_{i \in I} B_i$ for some $I \subset \{1, 2, \ldots\}$. Find $\mathbb{E}(X|\mathcal{G})$.

Solution It can be proved that since $\mathbb{E}(X|\mathcal{G})$ is \mathcal{G} -measurable and $\mathcal{G} = \sigma(\{B_i\}_{i>1})$, then

$$\mathbb{E}(X|\mathcal{G}) = \sum_{i \ge 1} \alpha_i 1_{B_i}$$

for some $\alpha_i \in \mathbb{R}$.

Let us find the constants $\alpha_i \in \mathbb{R}$. We write property (ii) for $G = B_i$:

$$\int_{B_i} \alpha_i \, dP = \int_{B_i} X \, dP,$$

37

i.e. $\alpha_i \int_{B_i} dP = \int_{B_i} X dP$, or equivalently $\alpha_i P(B_i) = \int_{B_i} X dP$. So $\alpha_i = \frac{1}{P(B_i)} \int_{B_i} X dP$. Hence,

$$\mathbb{E}(X|\mathcal{G}) = \sum_{i > 1} \left(\frac{1}{P(B_i)} \int_{B_i} X \, dP \right) 1_{B_i}.$$

Remark: If there exist some $i \geq 1$ such that $P(B_i) = 0$, for those values i we can choose $d_i \in \mathbb{R}$ arbitrarily. In that case,

$$\mathbb{E}(X|\mathcal{G}) = \sum_{\{i \ge 1; P(B_i) > 0\}} \left(\frac{1}{P(B_i)} \int_{B_i} X \, dP \right) 1_{B_i} + \sum_{\{i \ge 1; P(B_i) = 0\}} d_i 1_{B_i}$$

Example 11.5. For any event $A \in \mathcal{F}$ and for any σ -field $\mathcal{G} \subset \mathcal{F}$,

$$\mathbb{E}(1_A|\mathcal{G}) = P(A|\mathcal{G})$$
 a.s.

Proof: We show that $g = P(A|\mathcal{G})$ satisfies (i) and (ii) in Theorem 1:

- (i) g is \mathcal{G} -measurable (clear).
- (ii) $\int g dP = \int P(A|\mathcal{G}) dP = P(A \cap G) = \int 1_A dP \quad \forall G \in \mathcal{G}.$

Theorem 11.6 — Let (Ω, \mathcal{F}, P) be a probability space, $X : \Omega \to \mathbb{R}$ an integrable random variable. Suppose that $\mathcal{G} = \sigma(\mathcal{P})$ where

 \mathcal{P} is a π -system, i.e., if $A, B \in \mathcal{P}$ then $A \cap B \in \mathcal{P}$

and

$$\Omega = \bigcup_{i>1} P_i$$
 for some $P_i \in \mathcal{P}$.

Let $g: \Omega \to \mathbb{R}$ be a function which satisfies:

$$\begin{cases} (i) & g \text{ is } \mathcal{G}\text{-measurable and integrable} \\ (ii)' & \int_G g \, dP = \int_G X \, dP \quad \forall G \in \mathcal{P} \end{cases}$$

Then $g = \mathbb{E}(X|\mathcal{G})$ a.s.

Proof.

$$\int_G g\,dP = \int_G X\,dP = \int_G \mathbb{E}(X|\mathcal{G})\,dP \quad \forall G \in \mathcal{P}.$$

By **Theorem 16.10(iii)**, $g = \mathbb{E}(X|\mathcal{G})$ a.s.

Theorem 11.7 — Properties of Conditional Expectation Let (Ω, \mathcal{F}, P) be a probability space, $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ -field; let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be integrable random variables. If X = a a.s. where $a \in \mathbb{R}$, then $\mathbb{E}(X|\mathcal{G}) = a$ a.s.

- (fi) (Linearity) $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$ a.s. $\forall a, b \in \mathbb{R}$
- (iii) (Monotonicity) If $X \leq Y$ a.s., then $\mathbb{E}(X|\mathcal{G}) \leq \mathbb{E}(Y|\mathcal{G})$ a.s.
- (iv) $|\mathbb{E}(X|\mathcal{G})| \leq \mathbb{E}(|X||\mathcal{G})$

Proof. (i) Clearly g = a satisfies (i) and (ii) from Theorem 1.

(ii) We let $g = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$. We show that g satisfies properties (i) and (ii) from the definition of $\mathbb{E}(aX + bY|\mathcal{G})$ (Theorem 1):

- (a) g is \mathcal{G} -measurable. This is clear since g is a linear combination of \mathcal{G} -measurable functions. Similarly, g is integrable.
- (b) $\int_{G} g \, dP = \int_{G} (a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})) \, dP = a \int_{G} \mathbb{E}(X|\mathcal{G}) \, dP + b \int_{G} \mathbb{E}(Y|\mathcal{G}) \, dP = a \int_{G} X \, dP + b \int_{G} Y \, dP = \int_{G} (aX + bY) \, dP$ $\forall G \in \mathcal{G}.$
- (iii) $(\mathbb{E}(Y|\mathcal{G}) \mathbb{E}(X|\mathcal{G})) dP = \int_G \mathbb{E}(Y|\mathcal{G}) dP \int_G \mathbb{E}(X|\mathcal{G}) dP = \int_G Y dP \int_G X dP = \int_G (Y X) dP \ge 0$ for all $G \in \mathcal{G}$. Hence $\mathbb{E}(Y|\mathcal{G}) \mathbb{E}(X|\mathcal{G}) \ge 0$ a.s.

(iv)
$$-\mathbb{E}(|X||\mathcal{G}) \leq \mathbb{E}(X|\mathcal{G}) \leq \mathbb{E}(|X||\mathcal{G})$$

This is true because

$$-|X| \le X \le |X|$$

and then we apply monotonicity:

$$\mathbb{E}(-|X||\mathcal{G}) \leq \mathbb{E}(X|\mathcal{G}) \leq \mathbb{E}(|X||\mathcal{G}).$$

§12 March 4, 2024

§12.1 Conditional Expectation Continued

Theorem 12.1 — Suppose that X, Y, X_n are integrable.

- (i) If X = a with probability 1, then $E[X \mid \mathcal{G}] = a$.
- (ii) For constants a and b, $E[aX + bY \mid \mathcal{G}] = aE[X \mid \mathcal{G}] + bE[Y \mid \mathcal{G}]$.
- (iii) If $X \leq Y$ with probability 1, then $E[X \mid \mathcal{G}] \leq E[Y \mid \mathcal{G}]$.
- (iv) $|E[X \mid \mathcal{G}]| \le E[|X| \mid \mathcal{G}].$
- (v) If $\lim_n X_n = X$ with probability 1, $|X_n| \leq Y$, and Y is integrable, then $\lim_n E[X_n \mid \mathcal{G}] = E[X \mid \mathcal{G}]$ with probability 1.

Proof. If X = a with probability 1, the function identically equal to a satisfies conditions (i) and (ii) in the definition of $E[X \mid \mathcal{G}]$, and so (i) above follows by uniqueness.

As for (ii), $aE[X \mid \mathcal{G}] + bE[Y \mid \mathcal{G}]$ is integrable and measurable \mathcal{G} , and

$$\int_G \left(aE[X\mid\mathcal{G}] + bE[Y\mid\mathcal{G}]\right)dP = a\int_G E[X\mid\mathcal{G}]dP + b\int_G E[Y\mid\mathcal{G}]dP = a\int_G XdP + b\int_G YdP = \int_G (aX + bY)dP$$

for all G in \mathcal{G} , so that this function satisfies the functional equation.

If $X \leq Y$ with probability 1, then

$$\int_{G} (E[Y \mid \mathcal{G}] - E[X \mid \mathcal{G}]) dP = \int_{G} (Y - X) dP \ge 0$$

for all G in \mathcal{G} . Since $E[Y \mid \mathcal{G}] - E[X \mid \mathcal{G}]$ is measurable \mathcal{G} , it must be nonnegative with probability 1 (consider the set G where it is negative). This proves (iii), which clearly implies (iv) as well as the fact that $E[X \mid \mathcal{G}] = E[Y \mid \mathcal{G}]$ if X = Y with probability 1.

To prove (v), consider $Z_n = \sup_{k \ge n} |X_k - X|$. Now $Z_n \downarrow 0$ with probability 1, and by (ii), (iii), and (iv),

$$|E[X_n \mid \mathcal{G}] - E[X \mid \mathcal{G}]| \le E[Z_n \mid \mathcal{G}].$$

It suffices, therefore, to show that $E[Z_n \mid \mathcal{G}] \downarrow 0$ with probability 1. By (iii) the sequence $E[Z_n \mid \mathcal{G}]$ is nonincreasing and hence has a limit Z; the problem is to prove that Z = 0 with probability 1 or, Z being nonnegative, that E[Z] = 0. But $0 \le Z_n \le 2Y$, and so (34.1) and the dominated convergence theorem give

$$E[Z] = \int E[Z \mid \mathcal{G}] dP \le \int E[Z_n \mid \mathcal{G}] dP = E[Z_n] \to 0.$$

Theorem 12.2 (Theorem 34.2 (v) Dominated Convergence Theorem for Conditional Expectation) — Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ -field. Let $(X_n), X, Y$ be integrable random variables. If $X_n \to X$ a.s. and $|X_n| \le Y$ a.s. $\forall n$, then

$$\mathbb{E}(X_n|\mathcal{G}) \to \mathbb{E}(X|\mathcal{G})$$
 a.s.

Proof. We proved it above.

Theorem 12.3 — If X is integrable and the σ -fields \mathcal{G}_1 and \mathcal{G}_2 satisfy $\mathcal{G}_1 \subseteq \mathcal{G}_2$, then

$$E[E[X \mid \mathcal{G}_2] \mid \mathcal{G}_1] = E[X \mid \mathcal{G}_1]$$

with probability 1.

Proof. It will be shown first that the right side of (34.4) is a version of the left side if $X = I_{G_0}$ and $G_0 \in \mathcal{G}$. Since $I_{G_0}E[Y \mid \mathcal{G}]$ is certainly measurable \mathcal{G} , it suffices to show that it satisfies the functional equation

$$\int_{G} I_{G_0} E[Y \mid \mathcal{G}] dP = \int_{G} I_{G_0} Y dP, \quad G \in \mathcal{G}.$$

But this reduces to

$$\int_{G \cap G_0} E[Y \mid \mathcal{G}] dP = \int_{G \cap G_0} Y dP,$$

which holds by the definition of $E[Y \mid \mathcal{G}]$. Thus (34.4) holds if X is the indicator of an element of \mathcal{G} .

It follows by Theorem 34.2(ii) that (34.4) holds if X is a simple function measurable \mathcal{G} . For the general X that is measurable \mathcal{G} , there exist simple functions X_n , measurable \mathcal{G} , such that $|X_n| \leq |X|$ and $\lim_n X_n = X$ (Theorem 13.5). Since $|X_nY| \leq |XY|$ and |XY| is integrable, Theorem 34.2(v) implies that

$$\lim_{n} E[X_{n}Y \mid \mathcal{G}] = E[XY \mid \mathcal{G}]$$

with probability 1. But $E[X_nY \mid \mathcal{G}] = X_nE[Y \mid \mathcal{G}]$ by the case already treated, and of course $\lim_n X_nE[Y \mid \mathcal{G}] = XE[Y \mid \mathcal{G}]$. (Note that $X_nE[Y \mid \mathcal{G}] = E[X_nY \mid \mathcal{G}] \leq E[|XY| \mid \mathcal{G}]$, so that the limit $XE[Y \mid \mathcal{G}]$ is integrable.) Thus (34.4) holds in general. Notice that X has not been assumed integrable.

Theorem 12.4 (Tower Property) — If X is measurable \mathcal{G} , and if Y and XY are integrable, then

$$E[XY \mid \mathcal{G}] = XE[Y \mid \mathcal{G}]$$

with probability 1.

Proof. Let $X' = E(E(X \mid \mathcal{G}_2) \mid \mathcal{G}_1)$. We check that X' satisfies properties (i) and (ii) in the definition of $E(X \mid \mathcal{G}_1)$.

- (i) X' is \mathcal{G}_1 -measurable and integrable. This is clear.
- (ii) We have to prove that:

$$\int_{G} X' dP = \int_{G} X dP \quad \forall G \in \mathcal{G}_{1}$$

Let $G \in \mathcal{G}_1$ be arbitrary. Then

$$\int_{G} X' dP = \int_{G} E(E(X \mid \mathcal{G}_{2}) \mid \mathcal{G}_{1}) dP = \int_{G} E(Y \mid \mathcal{G}_{1}) dP = \int_{G} Y dP$$

where $Y = E(X \mid \mathcal{G}_2)$. By property (ii) in the definition of $E(Y \mid \mathcal{G}_1)$, since $G \in \mathcal{G}_1$,

$$\int_{G} E(X \mid \mathcal{G}_{2}) dP = \int_{G} X dP \quad \text{(using property (ii) in the def. of } E(X \mid \mathcal{G}_{2}))$$

$$\Rightarrow \int_G X dP.$$

Therefore,

$$\int_{G} X' dP = \int_{G} X dP \quad \forall G \in \mathcal{G}_{1}.$$

If $\mathcal{G}_1 \subseteq \mathcal{G}_2$ then trivially $E(E(X \mid \mathcal{G}_2) \mid \mathcal{G}_1) = E(X \mid \mathcal{G}_1)$.

$$Y = E(X \mid \mathcal{G}_2)$$

Y is \mathcal{G}_1 -measurable, hence \mathcal{G}_2 -measurable.

Lemma 12.5 — If X is \mathcal{G} -measurable then $E(X \mid \mathcal{G}) = X$ a.s.

Recall Jensen's inequality: If $\varphi : \mathbb{R} \to \mathbb{R}$ is a convex function, then

$$\varphi(E(X)) \le E(\varphi(X)) \tag{5}$$

for any r.v. X for which $X, \varphi(X)$ are integrable.

Example:
$$\varphi(X) = |X|^p$$
, $p \ge 1$

Then (5) says:

$$|E(X)|^p \le E(|X|^p) \quad \forall p \ge 1$$

In particular, $|E(X)|^2 \le E(X^2)$.

Recall the following basic properties of convex functions:

1. Definition: φ is convex if

$$\varphi(tx + (1-t)y) \le t\varphi(x) + (1-t)\varphi(y) \quad \forall t \in (0,1)$$

Remark: If $\mathcal{G}_1 \subseteq \mathcal{G}_2$ then trivially $E(E(X \mid \mathcal{G}_2) \mid \mathcal{G}_1) = E(X \mid \mathcal{G}_1)$.

$$Y = E(X \mid \mathcal{G}_2)$$

Y is \mathcal{G}_1 -measurable, hence \mathcal{G}_2 -measurable.

Lemma (Feb 28): If X is \mathcal{G} -measurable then $E(X \mid \mathcal{G}) = X$ a.s.

Recall: Jensen's inequality: If $\varphi : \mathbb{R} \to \mathbb{R}$ is a convex function, then

$$\varphi(E(X)) \le E(\varphi(X)) \tag{5}$$

for any r.v. X for which $X, \varphi(X)$ are integrable.

Example:
$$\varphi(X) = |X|^p, p \ge 1$$

Then (5) says:

$$|E(X)|^p \le E(|X|^p) \quad \forall p \ge 1$$

In particular, $|E(X)|^2 \le E(X^2)$.

Recall the following basic properties of convex functions:

1. Definition: φ is convex if

$$\varphi(tx + (1-t)y) \le t\varphi(x) + (1-t)\varphi(y) \quad \forall t \in (0,1)$$

- 2. If φ is convex, then φ is continuous.
- 3. If φ is convex,

$$\varphi'(x_0^+) = \lim_{\epsilon \to 0^+} \frac{\varphi(x_0 + \epsilon) - \varphi(x_0)}{\epsilon}$$
 exists and is finite

$$\varphi'(x_0^-) = \lim_{\epsilon \to 0^-} \frac{\varphi(x_0 - \epsilon) - \varphi(x_0)}{\epsilon}$$
 exists and is finite

4. If φ is convex and $\varphi'(x_0^-) \leq A(x_0) \leq \varphi'(x_0^+)$, then

$$\varphi(x) \ge \varphi(x_0) + A(x_0)(x - x_0) \quad \forall x \in \mathbb{R}$$
 (6)

(6) says that the graph of φ stays above any support line through $(x_0, \varphi(x_0))$. This happens for any $x_0 \in \mathbb{R}$.

Lemma 3 (Jensen's Inequality):

$$\varphi(E(X)) \le E(\varphi(X)) \tag{2}$$

for any convex function φ and any random variable X such that the expectations exist.

§13 March 6, 2024

§13.1 Proof of Conditional Jensen Inequality

Recall: Jensen Inequality says for any convex function φ ,

$$\varphi(\mathbb{E}(X)) \le \mathbb{E}(\varphi(X))$$

Goal: Extend this inequality to $\mathbb{E}(\cdot \mid \mathcal{G})$

Lemma 13.1 (Jensen Inequality for Conditional Expectations) — For any convex function $\varphi : \mathbb{R} \to \mathbb{R}$ and for any random variable X such that X and $\varphi(X)$ are integrable,

$$\varphi(\mathbb{E}(X \mid \mathcal{G})) \leq \mathbb{E}(\varphi(X) \mid \mathcal{G})$$
 a.s.

Proof. Recall from last time that $\forall x_0 \in \mathbb{R}, \forall x \in \mathbb{R}, \varphi'(x_0^-) \leq A(x_0) \leq \varphi'(x_0^+),$

$$\varphi(x) \ge \varphi(x_0) + A(x_0)(x - x_0) \tag{2}$$

Fix $\omega \in \Omega$. We apply (2) to $\begin{cases} x_0 = \mathbb{E}(X \mid \mathcal{G})(\omega) \\ x = X(\omega) \end{cases}$. We obtain:

$$\varphi(X(\omega)) \ge \varphi(\mathbb{E}(X \mid \mathcal{G})(\omega)) + A(\mathbb{E}(X \mid \mathcal{G})(\omega))(X(\omega) - \mathbb{E}(X \mid \mathcal{G})(\omega))$$

We drop ω from the writing. We write:

$$\varphi(X) \ge \varphi(\mathbb{E}(X \mid \mathcal{G})) + A(\mathbb{E}(X \mid \mathcal{G}))(X - \mathbb{E}(X \mid \mathcal{G})) \tag{2}$$

Case 1

Assume that $\mathbb{E}(X \mid \mathcal{G})$ is bounded, i.e. $|\mathbb{E}(X \mid \mathcal{G})| \leq M$ for some $M \geq 0$.

Note that if φ is convex, then φ and A are bounded on bounded sets. Hence $\varphi(\mathbb{E}(X \mid \mathcal{G}))$ and $A(\mathbb{E}(X \mid \mathcal{G}))$ are bounded (hence integrable).

Take $\mathbb{E}(\cdot \mid \mathcal{G})$ in (2). We use monotonicity of cond. expect. (Th.34.2.(iii)). We get:

$$\mathbb{E}(\varphi(X) \mid \mathcal{G}) \ge \mathbb{E}[\varphi(\mathbb{E}(X \mid \mathcal{G})) \mid \mathcal{G}] + \mathbb{E}[A(\mathbb{E}(X \mid \mathcal{G}))(X - \mathbb{E}(X \mid \mathcal{G})) \mid \mathcal{G}]$$

Case 2: General Case

Let $G_n = \{ \omega \in \Omega; |\mathbb{E}(X \mid \mathcal{G})(\omega)| \leq n \}$. Note that $G_n \in \mathcal{G}$ and

$$\mathbb{E}(\mathbb{I}_{G_n}X\mid\mathcal{G})=\mathbb{I}_{G_n}\mathbb{E}(X\mid\mathcal{G})$$

$$\mathbb{E}(X \mid \mathcal{G}) = \begin{cases} \mathbb{E}(X \mid \mathcal{G}) & \text{on } G_n \\ 0 & \text{on } G_n^c \end{cases}$$

Hence $\mathbb{E}(\mathbb{I}_{G_n}X \mid \mathcal{G})$ is bounded. By applying Case 1 (to $\mathbb{I}_{G_n}X$ instead of X), we obtain:

$$\varphi\left(\mathbb{E}(\mathbb{I}_{G_n}X \mid \mathcal{G})\right) \le \mathbb{E}\left(\varphi(\mathbb{I}_{G_n}X) \mid \mathcal{G}\right) \quad \text{a.s. } \forall n \ge 1$$
 (3)

We evaluate separately the two sides of (3):

LHS (left hand side) is equal to:

LHS of (3) =
$$\varphi (\mathbb{E}(\mathbb{I}_{G_n} X \mid \mathcal{G})) = \varphi (\mathbb{I}_{G_n} \mathbb{E}(X \mid \mathcal{G}))$$
 (4)

because \mathbb{I}_{G_n} is \mathcal{G} -measurable.

RHS: Note that

$$(\mathbb{I}_{G_n}X)(\omega) = \mathbb{I}_{G_n}(\omega)X(\omega) = \begin{cases} X(\omega) & \text{if } \omega \in G_n \\ 0 & \text{if } \omega \in G_n^c \end{cases}$$
$$\varphi(\mathbb{I}_{G_n}X)(\omega) = \begin{cases} \varphi(X(\omega)) & \text{if } \omega \in G_n \\ \varphi(0) & \text{if } \omega \in G_n^c \end{cases}$$

This means that $\varphi(\mathbb{I}_{G_n}X) = \varphi(X)\mathbb{I}_{G_n} + \varphi(0)\mathbb{I}_{G_n^c}$. Hence,

RHS of (3) =
$$\mathbb{E}[\varphi(X)\mathbb{I}_{G_n} + \varphi(0)\mathbb{I}_{G_n^c} \mid \mathcal{G}] = \mathbb{E}[\varphi(X)\mathbb{I}_{G_n} \mid \mathcal{G}] + \mathbb{E}[\varphi(0)\mathbb{I}_{G_n^c} \mid \mathcal{G}] = \mathbb{I}_{G_n}\mathbb{E}[\varphi(X) \mid \mathcal{G}] + \mathbb{I}_{G_n^c}\mathbb{E}[\varphi(0) \mid \mathcal{G}] = \mathbb{I}_{G_n}\mathbb{E}[\varphi(X) \mid \mathcal{G}] + \mathbb{E}[\varphi(X) \mid \mathcal{G}] = \mathbb{E}[\varphi(X) \mid \mathcal{G}] + \mathbb{E}[\varphi(X$$

We will use (4) and (5) in inequality (3). We obtain:

$$\varphi(\mathbb{I}_{G_n}\mathbb{E}(X \mid \mathcal{G})) \leq \mathbb{I}_{G_n}\mathbb{E}[\varphi(X) \mid \mathcal{G}] + \varphi(0)\mathbb{I}_{G_n^c} \quad \forall n \geq 1 \quad \text{a.s.}$$

We take the limit as $n \to \infty$. We use the fact that $\{G_n \subseteq G_{n+1} \forall n\}, \bigcup_{n=1}^{\infty} G_n = \Omega$.

Hence, $\mathbb{I}_{G_n} \to \mathbb{I}_{\Omega} = 1$ and $\mathbb{I}_{G_n^c} \to 0$.

Since φ is convex, φ is continuous. Hence $\varphi(\mathbb{I}_{G_n}\mathbb{E}(X\mid\mathcal{G}))\to\varphi(\mathbb{E}(X\mid\mathcal{G}))$ as $n\to\infty$.

Therefore,

$$\varphi(\mathbb{E}(X \mid \mathcal{G})) \le \mathbb{E}(\varphi(X) \mid \mathcal{G})$$
 a.s.

Recall (Th.33.3) X = r.v., $\mathcal{G} \subseteq \mathcal{F}$ sub σ -field. The *conditional distribution* of X given \mathcal{G} is $\mu(H,\omega)$ for $H \in \mathcal{R}$, $\omega \in \Omega$ such that:

(i) $\mu(\cdot, \omega)$ is a probability measure on \mathcal{R} for $\omega \in \Omega$.

(ii)
$$\mu(H,\cdot) = P(X \in H \mid \mathcal{G})$$
 a.s. $\forall H \in \mathcal{R}$

§13.2 Conditional Distribution and Conditional Expectation

Theorem 13.2 (Th.34.5: Conditional Distribution and Conditional Expectation) — Let (Ω, \mathcal{F}, P) be a probability space, $\mathcal{G} \subseteq \mathcal{F}$ is a sub σ -field, X is an *integrable* r.v. Let $\mu(H, \omega)$ be the cond. distrib. of X given \mathcal{G} .

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a measurable function s.t. $\varphi(X)$ is integrable. Then

$$\mathbb{E}[\varphi(X)\mid \mathcal{G}](\omega) = \int_{\mathbb{R}} \varphi(\xi)\mu(d\xi,\omega) \quad \text{for almost all } \omega \in \Omega.$$

In particular, if $\varphi(\xi) = \xi$, then

$$\mathbb{E}[X \mid \mathcal{G}](\omega) = \int_{\mathbb{R}} \xi \mu(d\xi, \omega) \quad \text{for almost all } \omega \in \Omega.$$

Proof. Case 1 $\varphi = \mathbb{1}_H$

For some Borel set $H \in \mathcal{R}$.

RHS of (6) =
$$\int_{\mathbb{R}} \mathbb{W}_{H}(x)\mu(dx \times \omega) = \mu(H, \omega) = \mathbb{P}(X \in H|\mathcal{G}) = \mathbb{E}\left[\mathbb{W}_{\{X \in H\}}|\mathcal{G}\right]$$
$$\mathbb{W}_{\{X \in H\}}(\omega) = \begin{cases} 1 & \text{if } \omega \in \{X \in H\} \\ 0 & \text{if } \omega \notin \{X \in H\} \end{cases} = \begin{cases} 1 & \text{if } X(\omega) \in H \\ 0 & \text{if } X(\omega) \notin H \end{cases}$$
$$\mathbb{W}_{H}(X)(\omega) = \mathbb{W}_{H}(X(\omega)) = \begin{cases} 1 & \text{if } X(\omega) \in H \\ 0 & \text{if } X(\omega) \notin H \end{cases}$$

So $\mathbb{1}_{\{X \in H\}} = \mathbb{1}_{H}(X)$ and $\mathbb{E}\left[\mathbb{1}_{\{X \in H\}}|\mathcal{G}\right] = \mathbb{E}\left[\mathbb{1}_{H}(X)|\mathcal{G}\right] = \mathbb{E}\left[\varphi(X)|\mathcal{G}\right]$

Case 2 φ is a simple function i.e., $\varphi = \sum_{i=1}^k \alpha_i \mathbb{1}_{H_i}$ with $\alpha_i \in \mathbb{R}, H_i \in \mathbb{R}$.

Follows by Case 1, using linearity. Case 3 $\varphi \ge 0$. By Theorem 13.5, there exists a sequence $\{\varphi_n\}$ of simple functions s.t. $\varphi_n(x) \uparrow \varphi(x)$ as $n \to \infty$, for any $x \in \mathbb{R}$. By Case 2,

$$\mathbb{E}[\varphi_n(X)|\mathcal{G}](\omega) = \int_{\mathbb{R}} \varphi_n(x)\mu(dx \times \omega) \quad \forall n \text{ for a.a. } \omega$$

Let $n \to \infty$ in (7). We have:

$$\begin{array}{ll} \mathbb{E}[\varphi_n(X)|\mathcal{G}] \xrightarrow{a.s.} \mathbb{E}[\varphi(X)|\mathcal{G}] & \text{by D.C.T.} \\ \text{To justify the application of this theorem, note that} \\ \varphi_n(X) \leq \varphi(X) \forall n \text{ and } \varphi(X) \text{ is integrable (by hypothesis)} \\ \int_{\mathbb{R}} \varphi_n(X) \mu(dx \times \omega) \to \int_{\mathbb{R}} \varphi(X) \mu(dx \times \omega) & \text{by MCT.} \end{array}$$

We obtain:

$$\mathbb{E}[\varphi(X)|\mathcal{G}] = \int_{\mathbb{R}} \varphi(X)\mu(dx \times \omega) \quad \text{for a.a. } \omega$$

Case 4 φ is arbitrary. We write $\varphi = \varphi^+ - \varphi^-$ where

$$\varphi^+(x) = \begin{cases} \varphi(x) & \text{if } \varphi(x) \ge 0\\ 0 & \text{if } \varphi(x) < 0 \end{cases}$$

$$\varphi^{-}(x) = \begin{cases} 0 & \text{if } \varphi(x) \ge 0 \\ -\varphi(x) & \text{if } \varphi(x) < 0 \end{cases}$$

The conclusion follows by applying Case 3 to φ^+, φ^- and use linearity.

Using Theorem 3.15, we can give another proof of Jensen's Inequality for Conditional Expectation: for any convex function φ ,

$$\varphi(\mathbb{E}(X|\mathcal{G})) \le \mathbb{E}[\varphi(X)|\mathcal{G}]$$
 a.s.

To see this, let $\mu(dx,\omega)$ be the cond. distr. of X given \mathcal{G} . Then

$$\mathbb{E}(X|\mathcal{G})(\omega) = \int_{\mathbb{R}} x\mu(dx \times \omega) \quad \text{by (6)'}$$
$$\varphi(\mathbb{E}(X|\mathcal{G})(\omega)) = \varphi\left(\int_{\mathbb{R}} x\mu(dx \times \omega)\right) \quad \text{for a.a. } \omega \in \mathbb{R}$$

On the other hand, by (6)

$$\mathbb{E}[\varphi(X)|\mathcal{G}](\omega) = \int_{\mathbb{R}} \varphi(X)\mu(dx \times \omega) \quad \text{for a.a. } \omega \in \mathbb{R}$$

So it suffices to prove that:

$$\varphi\left(\int_{\mathbb{R}} x\mu(dx \times \omega)\right) \leq \int_{\mathbb{R}} \varphi(x)\mu(dx \times \omega)$$
 for a.a. ω

This is in fact the (Classical) Jensen's Inequality which says that

$$\varphi(\mathbb{E}(X')) < \mathbb{E}[\varphi(X')]$$
 for r.v. X'

So here we choose X' to be a r.v. with law $\mu(dx,\omega)$ for fixed ω . Then

$$\begin{cases} \mathbb{E}[X'] = \int_{\mathbb{R}} x \mu(dx, \omega) \\ \mathbb{E}[\varphi(X')] = \int_{\mathbb{R}} \varphi(x) \mu(dx, \omega) \end{cases}$$

§14 March 11, 2024

Recall from last time:

Theorem 14.1 (Theorem 34.5) —

$$\mathbb{E}[\varphi(X)|\mathcal{G}] = \int_{\mathbb{R}} \varphi(z)\mu(dz;\omega)$$

for almost all ω . For all $\varphi : \mathbb{R} \to \mathbb{R}$ measurable s.t. $\varphi(X)$ is integrable.

Here $\mu(H,\omega)$ is the cond. distr. of X given \mathcal{G} :

$$\begin{cases} (\mathrm{i}) & \mu(\cdot,\omega) \text{ is a probab. measure } \forall \omega \in \Omega \\ (\mathrm{ii}) & \mu(H,\cdot) = P(X \in H | \mathcal{G}) \text{ a.s.} \end{cases}$$

We will use the following result (see the proof of Th 25.6):

Lemma 14.2 — Let μ be an arb. probab. measure on $(\mathbb{R}, \mathcal{R})$. Then there exists a probab. space (Ω, \mathcal{F}, P) and a r.v. $X : \Omega \to \mathbb{R}$ s.t. μ is the law of X, i.e.

$$P(X \in B) = \mu(B) \quad \forall B \in \mathcal{R},$$

or equivalently

$$P(X \le x) = F(x) \quad \forall x \in \mathbb{R} \text{ where } F(x) = \mu((-\infty, x]).$$

Proof. Let $(\Omega, \mathcal{F}, P) = ((0, 1), \mathcal{B}(0, 1), \lambda)$ where λ is the Lebesgue measure. Define the generalized inverse of F by:

$$F^{-1}(u) = \inf\{x \in \mathbb{R}; F(x) \ge u\} \quad \forall u \in (0,1)$$

It can be proved that: (exercise)

$$u \le F(x) \iff F^{-1}(u) \le x \quad \forall x \in \mathbb{R} \forall u \in (0,1)$$

Take $X(\omega) := F^{-1}(\omega) \quad \forall \omega \in (0,1)$. Then (1) holds:

$$P(X \le x) = P(\{\omega \in (0,1); X(\omega) \le x\}) = P(\{\omega \in (0,1); F^{-1}(\omega) \le x\})$$
$$= \lambda((0,F(x)]) = F(x)$$

§14.1 Markov Inequality for Cond. Expectation

Lemma 14.3 (Markov Inequality for Cond. Expectation) — For any integr. r.v. X and any sub- σ -field $\mathcal{G} \subseteq \mathcal{F}$, we have:

$$P(|X| \ge \alpha |\mathcal{G}) \le \frac{1}{\alpha^p} \mathbb{E}(|X|^p |\mathcal{G}) \quad a.s.$$

Proof. Let $\varphi(x) = 1_{\{|X| \geq \alpha\}}, x \in \mathbb{R}$. Clearly $\varphi : \mathbb{R} \to \mathbb{R}$ is measurable. Let $\mu(H, \omega)$ be the conditional distr. of X given \mathcal{G} .

For every $\omega \in \Omega$ fixed, let Z_{ω} be a r.v. defined on probab. space $(\Omega', \mathcal{F}', P') = ((0, 1), \mathcal{B}(0, 1), \lambda)$ such that the law of Z_{ω} (under P') is $\mu(\cdot; \omega)$, i.e.

$$P'\circ Z_{\omega}^{-1}=\mu(\cdot,\omega)\quad (\text{see Lemma 1})$$

Then

$$P(|X| \ge \alpha |\mathcal{G})(\omega) = \mathbb{E}\left[1_{\{|X| > \alpha\}} |\mathcal{G}\right](\omega) = \mathbb{E}[\varphi(X); \mathcal{G}](\omega)$$

Applying Theorem 34.5,

$$\int_{\mathbb{R}} \varphi(x)\mu(dx;\omega) = \int_{\Omega'} \varphi(Z_{\omega})dP' = P'(|Z_{\omega}| \ge \alpha)$$

By the classical Markov inequality,

$$P'(|Z_{\omega}| \ge \alpha) \le \frac{1}{\alpha^{p}} \mathbb{E}'(|Z_{\omega}|^{p}) = \frac{1}{\alpha^{p}} \int_{\mathbb{R}} |x|^{p} \mu(dx; \omega)$$

Thus,

$$P(|X| \ge \alpha |\mathcal{G})(\omega) \le \frac{1}{\alpha^p} \mathbb{E}(|X|^p |\mathcal{G})(\omega)$$

§14.2 Inequalites for Cond. Expectation

Corollary 14.4 (Chebyshev's Inequality for Cond. Expectation)

For any integrable r.v. X and for any sub- σ -field \mathcal{G} ,

$$P(|X - \mathbb{E}(X|\mathcal{G})| \ge \alpha|\mathcal{G}) \le \frac{1}{\alpha^2} \text{Var}(X|\mathcal{G}) \quad \forall \alpha > 0, \text{ if } X^2 \text{ is integrable}$$

where

$$Var(X|\mathcal{G}) = \mathbb{E}((X - \mathbb{E}(X|\mathcal{G}))^{2}|\mathcal{G}) = \mathbb{E}(X^{2}|\mathcal{G}) - (\mathbb{E}(X|\mathcal{G}))^{2}$$

Proof. Let $Y = X - \mathbb{E}(X|\mathcal{G})$. Then Y is integrable since it is a linear combination of integrable r.v.'s. We apply Lemma 2 to Y with p = 2. We obtain:

$$P(|Y| \ge \alpha |\mathcal{G}) \le \frac{1}{\alpha^2} \mathbb{E}(Y^2 | \mathcal{G}) = \frac{1}{\alpha^2} \text{Var}(X | \mathcal{G})$$
$$P(|X - \mathbb{E}(X | \mathcal{G})| \ge \alpha | \mathcal{G})$$

Note that Theorem 34.5 has a multivariate extension:

$$\mathbb{E}[\varphi(X,Y)|\mathcal{G}](\omega) = \int_{\mathbb{R}^2} \varphi(x,y)\mu(dx,dy;\omega) \quad \text{for a.a. } \omega$$

where $\mu(H,\omega)$ is the cond. distribution of (X,Y) given \mathcal{G} , i.e.

$$\begin{cases} (\mathrm{i}) & \mu(\cdot,\omega) \text{ is a prob. measure on } \mathbb{R}^2 \forall \omega \in \Omega \\ (\mathrm{ii}) & \mu(H,\cdot) = P((X,Y) \in H | \mathcal{G}) \text{ a.s. } \forall H \in \mathcal{R}^2 \end{cases}$$

Lemma 14.5 (Hölder Inequality for Cond. Expectations) — Let X, Y be two r.v.'s s.t. XY is integrable ($\mathbb{E}(|X|^p|\mathcal{G})$) is integrable and $\mathbb{E}(|Y|^q|\mathcal{G})$ is integrable).

For some p, q > 1 s.t.

$$\frac{1}{p} + \frac{1}{q} = 1$$

let \mathcal{G} be an arb. sub- σ -field of \mathcal{F} . Then

$$\mathbb{E}[|XY||\mathcal{G}] \le (\mathbb{E}(|X|^p|\mathcal{G}))^{\frac{1}{p}} (\mathbb{E}(|Y|^q|\mathcal{G}))^{\frac{1}{q}}$$

Proof. Let $\mu(H,\omega)$ be the cond. distr. of (X,Y) given \mathcal{G} . Let $\varphi:\mathbb{R}^2\to\mathbb{R}$ be given by

$$\varphi(x,y) = |xy|$$

Clearly φ is measurable. For any $\omega \in \Omega$ fixed, let $Z_{\omega} = (Z_{\omega}^1, Z_{\omega}^2)$ be a random vector defined on a probab. space $(\Omega', \mathcal{F}', P')$ s.t. the law of Z_{ω} under P' is $\mu(\cdot, \omega)$, i.e.

$$P' \circ Z_{\omega}^{-1} = \mu(\cdot, \omega)$$

Then

$$\mathbb{E}[|XY||\mathcal{G}](\omega) = \mathbb{E}[\varphi(X,Y)|\mathcal{G}](\omega) = \mathbb{E}[\varphi(Z_{\omega}^{1}, Z_{\omega}^{2})]$$

By change of variable,

$$\int_{\mathbb{R}^2} \varphi(z_\omega^1, z_\omega^2) dP' = \int_{\mathbb{R}} |z_\omega^1 z_\omega^2| d\mu(z_\omega; \omega)$$

By Hölder's inequality,

$$\mathbb{E}[|XY||\mathcal{G}] \le (\mathbb{E}(|X|^p|\mathcal{G}))^{\frac{1}{p}} \left(\mathbb{E}(|Y|^q|\mathcal{G})\right)^{\frac{1}{q}}$$

Finally, we define the Markov process:

Definition 14.6 Let (Ω, \mathcal{F}, P) be a prob. space and $X_t : \Omega \to \mathbb{R}$ a r.v. For all $t \geq 0$, the collection $(X_t)_{t \geq 0}$ is a Markov process if

$$P(X_u \in H|X_s, s \le t) = P(X_u \in H|X_t) \quad \forall t < u$$

Here the cond. probab. is w.r.t. $\sigma\{X_s; s \leq t\}$ on the RHS and $\sigma\{X_t\}$ on the LHS.

§15 March 13, 2024

§15.1 Markov Decision Process

Recall the following definition from last time:

A process $(X_t)_{t>0}$ (i.e. a collection of r.v.'s defined on (Ω, \mathcal{F}, P)) is called a Markov process if

$$P(X_u \in H | X_s, s \in [0, t]) = P(X_u \in H | X_t) \quad \forall 0 \le t < u \tag{3}$$

Denote $\mathcal{G}_1 = \sigma(\{X_s; s \in [0, t]\})$ "the history" (or the past) of the process up to time t $\mathcal{G}_2 = \sigma(\{X_t\})$ "the present" $\mathcal{G}_3 = \sigma(\{X_u\})$ where u > t "the future"

Relation (1) says that for every $A \in \mathcal{G}_3$

$$P(A|\sigma(\mathcal{G}_1 \cup \mathcal{G}_2)) = P(A|\mathcal{G}_2) \tag{4}$$

which is denoted by $\mathcal{G}_1 \vee \mathcal{G}_2$ (notation).

Lemma 15.1 (Problem 3.11) — Let $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$ be sub- σ -fields of \mathcal{F} . The following conditions are equivalent:

- (i) $P(A|\mathcal{G}_1 \vee \mathcal{G}_2) = P(A|\mathcal{G}_2)$ for all $A \in \mathcal{G}_3$.
- (ii) $P(A \cap B | \mathcal{G}_2) = P(A | \mathcal{G}_2) \cdot P(B | \mathcal{G}_2)$ for all $A \in \mathcal{G}_1$, $B \in \mathcal{G}_3$, i.e., A and B are "conditionally independent" given \mathcal{G}_2 .
- (iii) $P(A|\mathcal{G}_2 \vee \mathcal{G}_3) = P(A|\mathcal{G}_2)$ for all $A \in \mathcal{G}_1$.

Proof. It is enough to prove (i) \Longrightarrow (ii). The argument for (ii) \Longrightarrow (i) is the same. We have

$$\begin{split} P(A \cap A_3 | \mathcal{G}_2) &= E\left[\mathbf{1}_{A \cap A_3} | \mathcal{G}_2\right] \\ &= E\left[E\left[\mathbf{1}_A \mathbf{1}_{A_3} | \mathcal{G}_1 \vee \mathcal{G}_2\right] | \mathcal{G}_2\right] \quad \text{(Tower Property)} \\ &= E\left[\mathbf{1}_A E\left[\mathbf{1}_{A_3} | \mathcal{G}_1 \vee \mathcal{G}_2\right] | \mathcal{G}_2\right] \\ &= E\left[\mathbf{1}_A P(A_3 | \mathcal{G}_1 \vee \mathcal{G}_2) | \mathcal{G}_2\right] \\ &\qquad \qquad (\mathbf{1}_{A_3} \text{ is } \mathcal{G}_1\text{-measurable, hence } \mathcal{G}_1 \vee \mathcal{G}_2\text{-measurable)} \\ &= E\left[\mathbf{1}_A P(A_3 | \mathcal{G}_2) | \mathcal{G}_2\right] \quad \text{(from (i))} \\ &= E\left[\mathbf{1}_A | \mathcal{G}_2\right] P(A_3 | \mathcal{G}_2) \\ &= P(A | \mathcal{G}_2) P(A_3 | \mathcal{G}_2). \end{split}$$

This shows that (i) implies (ii). (ii) \implies (i) We show that $P(A|\mathcal{G}_2)$ satisfies the two conditions from the def of $P(A_3|\mathcal{G}_1 \vee \mathcal{G}_2)$:

- 1) $P(A|\mathcal{G}_2)$ is \mathcal{G}_2 -measurable, hence $\mathcal{G}_1 \vee \mathcal{G}_2$ -measurable
- 2) We have to show that

$$\int_{G} P(A|\mathcal{G}_{2}) dP = P(A \cap G) \quad \forall G \in \mathcal{G}_{1} \vee \mathcal{G}_{2}$$

By Theorem 33.1, it is enough to prove that (i) holds $\forall G \in \mathcal{F}$ where $\{F = A \cap A' : A \in \mathcal{G}_1, A' \in \mathcal{G}_2\}$ is a π -system (exer) and $\sigma(F) = \mathcal{G}_1 \vee \mathcal{G}_2$ (exer). Ω is a countable union of sets in F ($\Omega \in \mathcal{G}_1, \mathcal{G}_2$).

Let $G = A \cap A'$ with $A \in \mathcal{G}_1, A' \in \mathcal{G}_2$. Then on the left-hand side of (1) we have: **LHS of (1)**:

LHS of (1) =
$$\int_{A_{1} \cap A_{2}} P(A_{3}|\mathcal{G}_{2}) dP$$
= $E\left[\mathbf{1}_{A_{1} \cap A_{2}} P(A_{3}|\mathcal{G}_{2})\right]$
= $E\left[E\left[\mathbf{1}_{A_{1}} \frac{P(A_{3}|\mathcal{G}_{2})}{\mathbf{1}_{A_{2}}} \middle| \mathcal{G}_{2}\right]\right]$
by \mathcal{G}_{2} -measurability (product of \mathcal{G}_{2} -meas. rv's)
= $E\left[\mathbf{1}_{A_{2}} P(A_{3}|\mathcal{G}_{2}) \cdot E\left[\mathbf{1}_{A_{1}} \middle| \mathcal{G}_{2}\right]\right]$
= $E\left[\mathbf{1}_{A_{2}} P(A_{3}|\mathcal{G}_{2})\right] \cdot P(A_{1}|\mathcal{G}_{2})$
using (ii)
= $E\left[\mathbf{1}_{A_{1} \cap A_{2} \cap A_{3}} \middle| \mathcal{G}_{2}\right]$
= $P(A_{1} \cap A_{2} \cap A_{3})$.

RHS of (1):

RHS of (1) =
$$P(A_1 \cap (A_2 \cap A_3))$$

= $E\left[\mathbf{1}_{A_1 \cap A_2 \cap A_3}\right]$
= $E\left[E\left[\mathbf{1}_{A_1 \cap A_3}\mathbf{1}_{A_2}\middle|\mathcal{G}_2\right]\right]$
= $E\left[\mathbf{1}_{A_2}\right] \cdot E\left[\mathbf{1}_{A_1 \cap A_3}\middle|\mathcal{G}_2\right]$
= $P(A_2) \cdot P(A_1 \cap A_3|\mathcal{G}_2)$

§15.2 Discrete Time Martingales

Definition 15.2 Let X_1, X_2, \ldots be a sequence of random variables on a probability space (Ω, \mathcal{F}, P) , and let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be a sequence of σ -fields in \mathcal{F} . The sequence $\{(X_n, \mathcal{F}_n) : n = 1\}$ $1, 2, \ldots$ is a martingale if the following four conditions hold:

- 1. $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$, 2. X_n is measurable with respect to \mathcal{F}_n , 3. $E[|X_n|] < \infty$ for all n,
- 4. with probability 1, $E[X_{n+1}|\mathcal{F}_n] = X_n$.

We simply say that $\{X_n\}_{n\geq 1}$ is a martingale if (X_n) is a martingale with respect to the natural filtration

$$\mathcal{F}_n^X = \sigma(X_1, X_2, \dots, X_n)$$

which is the "smallest" σ -filtration which satisfies (i) and (ii).

Remark: If (ii) holds, then (iv) is equivalent to:

$$\int_{A} X_{n} dP - \int_{A} X_{n+1} dP = 0 \quad \forall A \in \mathcal{F}_{n}$$

(by the def. of $E[X_n|\mathcal{F}_n]$).

Motivation: Bets placed at horse races

- X_n = fortune of the gambler after the *n*-th race
- \mathcal{F}_n = information accumulated by the gambler up to the *n*-th race.
- $E[X_{n+1}|\mathcal{F}_n]$ = expected fortune after the (n+1)-th race.

The game is fair if $E[X_{n+1}|\mathcal{F}_n] = X_n$.

§16 March 18, 2024

§16.1 Section 35 Martingales Continued

Definition 16.1 Let $(X_n)_{n\geq 1}$ be a sequence of random variables on a probability space (Ω, \mathcal{F}, P) . The sequence is a martingale with respect to the filtration $(\mathcal{F}_n)_{n>1}$ if:

- (i) $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for all $n \geq 1$. (ii) X_n is \mathcal{F}_n -measurable for all $n \geq 1$. (iii) $E[|X_n|] < \infty$ for all $n \geq 1$.
- (iv) $E[X_{n+1}|\mathcal{F}_n] = X_n$ almost surely for all $n \ge 1$.

Basic Example: Let $(S_n)_{n\geq 1}$ be independent random variables with $E[\Delta_n]=0$ where $X_n = \frac{1}{2}\Delta_n$ and $\mathcal{F}_n = \sigma(\Delta_1, \dots, \Delta_n)$. Then $(X_n)_{n\geq 1}$ is a martingale with respect to $(\mathcal{F}_n)_{n\geq 1}$.

Example 16.2 (Martingale Representation with Respect to Filtration). Let (Ω, \mathcal{F}, P) be a probability space, let ν be a finite measure on \mathcal{F} , and let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be a nondecreasing sequence of σ -fields in \mathcal{F} . Suppose that P dominates ν when both are restricted to \mathcal{F}_n —that is, suppose that $A \in \mathcal{F}_n$ and P(A) = 0 together imply that $\nu(A) = 0$. There is then a density or Radon-Nikodym derivative X_n of ν with respect to P when both are restricted to \mathcal{F}_n . X_n is a function that is measurable \mathcal{F}_n and integrable with respect to P, and it satisfies

$$\int_{A} X_n dP = \nu(A), \quad A \in \mathcal{F}_n.$$
 (5)

If $A \in \mathcal{F}_n$ then $A \in \mathcal{F}_{n+1}$ as well, so that

$$\int_{A} X_{n+1} dP = \nu(A); \tag{6}$$

this and (35.9) give (35.3). Thus the X_n are a martingale with respect to the \mathcal{F}_n .

Definition 16.3 We say that a sequence $(X_n)_{n>1}$ is a submartingale with respect to the filtration $(\mathcal{F}_n)_{n\geq 1}$ if it satisfies conditions (i)–(iii) in Definition 1, and the following property:

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n \text{ a.s. for all } n \geq 1.$$

Condition (iv) is equivalent to:

$$\int_A X_n dP \le \int_A X_{n+1} dP \quad \forall A \in \mathcal{F}_n.$$

Example 16.4 (Basic Example). Let $(\Delta_n)_{n\geq 1}$ be i.i.d. random variables with $\mathbb{E}[\Delta_n] \geq 0$ for all $n\geq 1$. Let $X_n=\sum_{i=1}^n\frac{\Delta_i}{2}$ and $\mathcal{F}_n=\sigma(\Delta_1,\ldots,\Delta_n)$, then $(X_n)_{n\geq 1}$ is a submartingale with respect to $(\mathcal{F}_n)_{n\geq 1}$.

To see this, we note that for all $n \geq 1$,

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n + \frac{\Delta_{n+1}}{2}|\mathcal{F}_n]$$

$$= X_n + \mathbb{E}[\frac{\Delta_{n+1}}{2}|\mathcal{F}_n]$$

$$= X_n + \frac{\mathbb{E}[\Delta_{n+1}]}{2} \ge X_n \text{ a.s.},$$

since Δ_{n+1} is independent of \mathcal{F}_n and hence $\mathbb{E}[\Delta_{n+1}|\mathcal{F}_n] = \mathbb{E}[\Delta_{n+1}]$.

If $(X_n)_{n\geq 1}$ is a submartingale with respect to $(\mathcal{F}_n)_{n\geq 1}$, then $(X_n)_{n\geq 1}$ is also a submartingale with respect to $(\mathcal{G}_n)_{n\geq 1}$ where $\mathcal{G}_n = \sigma(X_1,\ldots,X_n)$ is the minimal σ -field generated by (X_1,\ldots,X_n) .

Properties of Submartingales (exercise):

- 1. $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n$ almost surely for all $n \geq 1$.
- 2. $\mathbb{E}[X_1] \leq \mathbb{E}[X_2] \leq \mathbb{E}[X_3] \leq \dots$
- 3. If $X_n X_{n-1} = \Delta_n$ for all $n \ge 1$, then Δ_n is integrable and $\mathbb{E}[\Delta_n | \mathcal{F}_{n-1}] \ge 0$ almost surely for all $n \ge 1$.

Theorem 16.5 — (i) If $(X_n)_{n\geq 1}$ is a martingale with respect to $(\mathcal{F}_n)_{n\geq 1}$ and $\phi: \mathbb{R} \to \mathbb{R}$ is a convex function such that $\phi(X_n)$ is integrable for all $n\geq 1$, then $(\phi(X_n))_{n\geq 1}$ is a submartingale with respect to (\mathcal{F}_n) .

(ii) If $(X_n)_{n\geq 1}$ is a submartingale with respect to (\mathcal{F}_n) and $\phi: \mathbb{R} \to \mathbb{R}$ is a convex non-decreasing function such that $\phi(X_n)$ is integrable for all $n\geq 1$, then $(\phi(X_n))_{n\geq 1}$ is a submartingale with respect to (\mathcal{F}_n) .

Proof. Properties (i)-(ii) from the definition of submartingale are clearly satisfied. To prove (iv') we have the following:

- (i) $\mathbb{E}[\phi(X_{n+1})|\mathcal{F}_n] \ge \phi(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) = \phi(X_n)$ by Jensen's Inequality for Conditional Expectation
- (ii) $\mathbb{E}[\phi(X_{n+1})|\mathcal{F}_n] \geq \phi(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) \geq \phi(X_n)$ as ϕ is convex and ϕ is non-decreasing.

Observation: If $(X_n)_{n\geq 1}$ is a martingale then $(X_n^2)_{n\geq 1}$ and $(|X_n|)_{n\geq 1}$ are sub-martingales.

Definition 16.6 Let $(\mathcal{F}_n)_{n\geq 1}$ be a filtration on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\tau: \Omega \to \{1, 2, \ldots\}$ be a random variable such that $\{\tau \leq n\} \in \mathcal{F}_n$ for all $n \geq 1$. We say that τ is a stopping time with respect to $(\mathcal{F}_n)_{n\geq 1}$ and define

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \le n \} \in \mathcal{F}_n \text{ for all } n \ge 1 \}.$$

If $(X_n)_{n\geq 1}$ is a sequence of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, we define a new random variable $X_\tau: \Omega \to \mathbb{R}$ by

$$X_{\tau}(\omega) := X_{\tau(\omega)}(\omega)$$
 for all $\omega \in \Omega$.

Lemma 16.7 — Let $\mathcal{F} = (\mathcal{F}_n)_{n \geq 1}$ be a filtration on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider the following statements:

- (a) τ is a stopping time with respect to (\mathcal{F}_n) if $\{\tau = n\} \in \mathcal{F}_n$ for all $n \geq 1$.
- (b) \mathcal{F}_{τ} is a σ -field if τ is a stopping time with respect to (\mathcal{F}_n) .
- (c) τ is \mathcal{F}_{τ} -measurable and X_{τ} is \mathcal{F}_{τ} -measurable if X_n is \mathcal{F}_n -measurable.
- (d) If $\tau(\omega) = k$ for some fixed $k \in \mathbb{N}$, then $\mathcal{F}_{\tau} = \mathcal{F}_{k}$.
- (e) If $\tau_1 \leq \tau_2$ are stopping times with respect to (\mathcal{F}_n) , then $\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2}$.

Proof. a) We have that $\{\tau = n\} = \bigcap_{m \geq n} \{\tau \leq m\} \subseteq \mathcal{F}_m \subseteq \mathcal{F}_n$ for all $m \geq n$, hence $\{\tau = n\} \in \mathcal{F}_n$. Conversely, $\{\tau \leq n\} = \bigcup_{k=1}^n \{\tau = k\} \in \mathcal{F}_k \subseteq \mathcal{F}_n$ for all $k \leq n$, therefore $\{\tau \leq n\} \in \mathcal{F}_n$. b) \mathcal{F}_{τ} satisfies the following axioms:

- 1. $\emptyset \in \mathcal{F}_{\tau}$: $\emptyset \cap \{\tau \leq n\} = \emptyset \in \mathcal{F}_n \text{ for all } n \geq 1$.
- 2. If $A \in \mathcal{F}_{\tau}$ then $A^c \in \mathcal{F}_{\tau}$: $A^c \cap \{\tau \leq n\} = \{\tau \leq n\} \setminus A \in \mathcal{F}_n$ because $\{\tau \leq n\}$ and A are in \mathcal{F}_n .
- 3. If $\{A_k\} \subseteq \mathcal{F}_{\tau}$ then $\bigcup_k A_k \in \mathcal{F}_{\tau}$: $(\bigcup_k A_k) \cap \{\tau \leq n\} = \bigcup_k (A_k \cap \{\tau \leq n\}) \in \mathcal{F}_n$ by the closure of \mathcal{F}_n under countable unions.

We continue with parts c) and e) next time.

§17 March 20, 2024

Recall: Let $(\mathcal{F}_n)_{n\geq 1}$ be a filtration on a probability space (Ω, \mathcal{F}, P) . A random variable $\tau: \Omega \to \{1, 2, \ldots\}$ is called a *stopping time* with respect to $(\mathcal{F}_n)_{n\geq 1}$ if

$$\{\tau = n\} \in \mathcal{F}_n \text{ for all } n \geq 1.$$

In this case, we define $\mathcal{F}_{\tau} \equiv \{A \in \mathcal{F} : A \cap \{\tau = n\} \in \mathcal{F}_n \text{ for all } n \geq 1\}$. We proved the following properties:

- 1. τ is a stopping time if $\{\tau = n\} \in \mathcal{F}_n$ for all $n \geq 1$.
- 2. \mathcal{F}_{τ} is a σ -field.
- 3. τ is \mathcal{F}_{τ} -measurable.
- 4. If $\tau = k$ (constant) then $\mathcal{F}_{\tau} = \mathcal{F}_{k}$.

Exercise: Show that $\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \leq n \} \in \mathcal{F}_n \text{ for all } n \geq 1 \}.$

Property: If $\tau_1 \leq \tau_2$ are stopping times with respect to $(\mathcal{F}_n)_{n\geq 1}$, then $\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2}$.

Proof. Let $A \in \mathcal{F}_{\tau_1}$. We want to prove that $A \in \mathcal{F}_{\tau_2}$, i.e., $A \cap \{\tau_2 = n\} \in \mathcal{F}_n$ for all n.

$$A \cap \{\tau_2 = n\} = (A \cap \{\tau_1 = n\}) \cap \{\tau_2 = n\} \in \mathcal{F}_n \text{ since } \{\tau_2 = n\} \in \mathcal{F}_n.$$

Property: If $(X_n)_{n\geq 1}$ are r.v.'s such that X_n is \mathcal{F}_n -measurable for all $n\geq 1$, then $\mathbf{1}_{\{X_{\tau}\in B\}}$ is \mathcal{F}_{τ} -measurable.

Proof. Let $B \in \mathbb{R}$ be an arbitrary Borel set. We have to prove that $\mathbf{1}_{\{X_{\tau} \in B\}}^{-1}(1) = \{X_{\tau} \in B\} \in \mathcal{F}_{\tau}$. Using property 5, this is equivalent to showing that $\{X_{\tau} \in B\} \cap \{\tau = n\} \in \mathcal{F}_n$ for all $n \geq 1$. Note that:

$$\begin{split} \{X_{\tau} \in B\} \cap \{\tau = n\} &= \{\omega \in \Omega : X_{\tau(\omega)}(\omega) \in B, \tau(\omega) = n\} \\ &= \{\omega \in \Omega : X_n(\omega) \in B\} \cap \{\tau = n\} \in \mathcal{F}_n, \quad \text{for any } n \geq 1. \end{split}$$

Theorem 17.1 (Optional Sampling Theorem) — Let $(X_i)_{i=1,...,n}$ be a submartingale with respect to the filtration $(\mathcal{F}_i)_{i=1,...,n}$. Let τ_1 and τ_2 be stopping times with respect to $(\mathcal{F}_i)_{i=1,...,n}$ with $\tau_1, \tau_2 \colon \Omega \to \{1, 2, \ldots, n\}$. Then

$$\mathbb{E}[X_{\tau_2}|\mathcal{F}_{\tau_1}] \ge X_{\tau_1} \quad \text{a.s.} \tag{7}$$

that is, (X_{τ_1}, X_{τ_2}) is a submartingale with respect to $(\mathcal{F}_{\tau_1}, \mathcal{F}_{\tau_2})$.

Proof. Let $X_{\tau_i} = \sum_{k=1}^n X_k \mathbf{1}_{\{\tau_i = k\}}$ then $|X_{\tau_i}| \leq \sum_{k=1}^n |X_k| \mathbf{1}_{\{\tau_i = k\}} \leq \sum_{k=1}^n |X_k|$. So $\mathbb{E}[|X_{\tau_i}|] \leq \sum_{k=1}^n \mathbb{E}[|X_k|] < \infty$, i.e., X_{τ_i} is integrable. (for i = 1, 2)
To show (2), we must prove that:

$$\left| \int_{A} X_{\tau_2} dP \right| \ge \int_{A} X_{\tau_1} dP \quad \forall A \in \mathcal{F}_{\tau_1} \quad (3)$$

Let $\Delta_k = X_k - X_{k-1}$ for k = 2, ..., n, and $\Delta_1 = X_1$. Then $X_{\tau_2} - X_{\tau_1} = \sum_{k=\tau_1+1}^{\tau_2} \Delta_k = \sum_{k=\tau_1+1}^n \Delta_k \mathbf{1}_{\{\tau_1 < k \le \tau_2\}}$.

(Use: $\sum_{k=\tau_1+1}^{m} (X_k - X_{k-1}) = (X_{m-1} - X_{\tau_1}) + (X_{m-2} - X_{m-1}) + \dots + (X_m - X_{m-1}) = X_m - X_{\tau_1}$ for any $m, \tau_1 \in \{1, \dots, n\}, \tau_1 \leq m$)

In our case, $L = \tau_1(\omega), M = \tau_2(\omega)$. Hence, for $A \in \mathcal{F}_{\tau_1}$

$$\int_{A} (X_{\tau_2} - X_{\tau_1}) dP = \int_{A} \sum_{k=\tau_1+1}^{\tau_2} \Delta_k dP = \int_{A} \sum_{k=\tau_1+1}^{n} \Delta_k \mathbf{1}_{\{\tau_1 < k \le \tau_2\}} dP.$$

Note that

$$\mathbf{1}_{B_{\tau_2}} := A \cap \{ \tau_1 < k \le \tau_2 \} = A \cap \{ \tau_1 < k \} \cap \{ k \le \tau_2 \} \in \mathcal{F}_{\tau_2},$$

where $B_{\tau_2} \in \mathcal{F}_{\tau_2}$ by the definition of \mathcal{F}_{τ_2} . Recall that $(\Delta_k)_{k=1,\ldots,n}$ is a submartingale difference:

$$\mathbb{E}[X_k|\mathcal{F}_{k+1}] \geq X_k \quad \text{so} \quad \mathbb{E}[X_{\tau_2} - X_{\tau_1}|\mathcal{F}_{\tau_2}] \geq 0 \quad \text{i.e.} \quad \mathbb{E}[\Delta_k|\mathcal{F}_{k+1}] \geq 0 \quad \text{a.s.}$$

This means that for any set $B \in \mathcal{F}_{\tau_1}$,

$$\int_{B} \Delta_k \, dP \ge 0.$$

In particular, this is true for $B=B_{\tau_2}$ above. Hence

$$\int_{A} \Delta_k \, dP \ge 0, \quad \text{for all} \quad A \in \mathcal{F}_{\tau_1}, \{ \tau_1 < k \le \tau_2 \}.$$

Hence

$$\int_A (X_{\tau_2} - X_{\tau_1}) dP \ge 0.$$

If $\tau_1 \leq \tau_2 \leq \ldots \leq \tau_m$ are stopping times with respect to $(\mathcal{F}_k)_{k=1,\ldots,n}$, and $(X_k)_{k=1,\ldots,n}$ is a submartingale with respect to $(\mathcal{F}_k)_{k=1,\ldots,n}$, then $(X_{\tau_1},X_{\tau_2},\ldots,X_{\tau_m})$ is a submartingale with respect to $(\mathcal{F}_{\tau_1},\mathcal{F}_{\tau_2},\ldots,\mathcal{F}_{\tau_m})$.

Theorem 17.2 (Kolmogorov's Maximal Inequality) — Let $(X_k)_{k\geq 1}$ be i.i.d. random variables with $\mathbb{E}(X_k^2)<\infty$ for all k. Let

$$S_n = \sum_{k=1}^n X_k,$$

and we know that (S_n) is a martingale. Then Kolmogorov's inequality states that

$$\mathbb{P}\left(\max_{k \le n} |S_k| > \alpha\right) \le \frac{1}{\alpha^2} \mathbb{E}(S_n^2) \quad \text{for all } \alpha > 0.$$

Note that $\max_{k \le n} |S_k| > \alpha$ is equivalent to $\max_{k \le n} S_k^2 > \alpha^2$. Hence, we can write the inequality as:

$$\mathbb{P}\left(\max_{k \le n} S_k^2 > \alpha^2\right) \le \frac{\mathbb{E}(S_n^2)}{\alpha^2}.$$

Recall that (S_n^2) is a submartingale. The next result extends this inequality to an arbitrary submartingale.

Theorem 17.3 (Maximal Inequality) — Let $(X_k)_{k=1,...,n}$ be a submartingale with respect to $(\mathcal{F}_k)_{k=1,...,n}$. Then for any $\alpha > 0$,

$$\mathbb{P}\left(\max_{k \le n} |X_k| \ge \alpha\right) \le \frac{1}{\alpha} \mathbb{E}(|X_n|).$$

Proof. Define: $\tau: \Omega \to \{1, 2, \dots, n\}$ as

$$\tau(\omega) = \begin{cases} \min\{j \leqslant n : X_j(\omega) \ge \alpha\} & \text{if there exists } j \leqslant n \text{ s.t. } X_j(\omega) \ge \alpha, \\ n & \text{otherwise } (i.e., X_i(\omega) < \alpha \ \forall i \leqslant n). \end{cases}$$

Clearly, τ is a stopping time w.r.t. $(\mathcal{F}_k)_{k=1,\ldots,n}$.

Proof of Claim: We have to prove that $\{\tau = k\} \in \mathcal{F}_k$ for all k = 1, ..., n (see property 1 on page 1).

Let $\{r_j\}_{j=1,\ldots,n}$ be arbitrary. We have two cases:

Case 1: $\{r_i \leqslant m\}$

For $\{\tau = k\} = \bigcap_{j=1}^k \{X_j < \alpha\} \cap \{X_k \ge \alpha\} \in \mathcal{F}_k$

Case 2: $\{r_j = n\}$

For $\{\tau = n\} = \bigcap_{j=1}^n \{X_j < \alpha\} \in \mathcal{F}_n$.

Define $\tau \geqslant n$ (also a stopping time). Clearly, $\tau_1 \leq \tau_2$. By Optional Sampling Theorem (Theorem 35.2)

$$\mathbb{E}[X_{\tau_2}|\mathcal{F}_{\tau_1}] \geq X_{\tau_1} \text{ a.s.}$$

Let $M_{\tau} = \max\{X_i, i \leq \tau\}$, for $\tau = 1, \dots, n$. Clearly, $M_{\tau_1} \leq M_{\tau_2} \leq \dots \leq M_{\tau_n}$.

Let us examine the event $\{M_n \geq \alpha\}$.

Claim: $\{M_n \geq \alpha\} \in \mathcal{F}_{\tau_1}$, i.e., $\{M_n \geq \alpha\} \cap \{\tau_1 \leq \tau_2\} \in \mathcal{F}_{\tau_2}$ for all $\tau_2 = 1, \dots, n$.

Proof of Claim: We will show that: $\forall \tau_2 = 1, \ldots, n$.

$$\{M_n \ge \alpha\} \cap \{\tau_1 \le \tau_2\} = \{M_{\tau_2} \ge \alpha\}$$

To prove (7), we use double-inclusion:

- (\subseteq) Let $\omega \in \{M_{\tau_2} \ge \alpha\}$. Then $M_{\tau_2}(\omega) \ge \alpha$. But since $M_{\tau_2}(\omega) = \max\{X_i(\omega), i \le \tau_2\}$ and $\tau_1(\omega)$ is the smallest index i for which $X_i(\omega) \ge \alpha$, we have $\{\tau_1(\omega) \le \tau_2\}$.
- (\supseteq) If $\tau_2 = n$, the inclusion is clear. If $\tau_2 = n 1$, by the definition of τ_1 , $X_{\tau_1} \ge \alpha$. But $M_{\tau_2} \ge X_{\tau_1}$, so $M_{\tau_2} \ge \alpha$. On the event $\{\tau_1 \le \tau_2\}$, we have $M_{\tau_1} \le M_{\tau_2}$. Hence, $\{M_{\tau_2} X_{\tau_1} \ge 0\}$.

Remark: If $\tau_1, \tau_2, \ldots, \tau_n$ are stopping times w.r.t. $(\mathcal{F}_{\tau})_{\tau=1,\ldots,n}$, then $(X_{\tau_1}, X_{\tau_2}, \ldots, X_{\tau_n})$ is a submartingale w.r.t. $(\mathcal{F}_{\tau_1}, \mathcal{F}_{\tau_2}, \ldots, \mathcal{F}_{\tau_n})$.

Coming back to (8), we recall that (8) means that

$$\int_{A} X_{\tau_2} dP \ge \int_{A} X_{\tau_1} dP \quad \forall A \in \mathcal{F}_{\tau_1},$$

we will this inequality with $A = \{M_n \geq \alpha\} \in \mathcal{F}_{\tau_1}$, hence

$$\int \mathbf{1}_{\{M_n \ge \alpha\}} X_{\tau_2} dP \ge \int \mathbf{1}_{\{M_n \ge \alpha\}} X_{\tau_1} dP.$$

To summarize, we obtain that:

$$\int_{\{M_n \ge \alpha\}} X_{\tau_2} dP \le \int_{\{M_n \ge \alpha\}} X_n dP \tag{9}$$

On the other hand, $\{M_n \geq \alpha\} = \bigcup_{k=1}^n \{X_k \geq \alpha\}$. So if $\omega \in \{M_n \geq \alpha\}$, then $\tau_2 = n$ such that $X_{\tau_2}(\omega) \geq \alpha$ and $\tau_1(\omega) \leq \tau_2$.

Hence

$$\int_{\{M_n \ge \alpha\}} X_{\tau_2} dP = \alpha P(M_n \ge \alpha) \tag{10}$$

Putting (9) and (10) together, we get:

$$\alpha P(M_n \ge \alpha) \le \int_{\{M_n > \alpha\}} X_n^+ dP - \int_{\{M_n > \alpha\}} X_n^- dP \le \int_{\Omega} (X_n^+ + X_n^-) dP = \mathbb{E}(|X_n|)$$

§18 March 27, 2024

§18.1 Martingales Continued

Let [a, b] be an interval, and X_1, X_2, \ldots, X_n are random variables. Inductively, we define variables $\sigma_1, \sigma_2, \ldots, \sigma_n$ as follows:

$$\sigma_1 = \begin{cases} \min\{j \le n : X_j \le \alpha\} & \text{if there exists } j \le n \text{ s.t. } X_j \le \alpha \\ n & \text{otherwise} \end{cases}$$

For any $k \leq n$:

• if k is even,

$$\sigma_k = \begin{cases} \min\{j \le n; j > \sigma_{k-1} \text{ and } X_j \ge \beta\} & \text{if there exists } j \le n \text{ s.t. } j > \sigma_{k-1} \text{ and } X_j \ge \beta\\ n & \text{otherwise} \end{cases}$$

• if k is odd,

$$\sigma_k = \begin{cases} \min\{j \le n; j > \sigma_{k-1} \text{ and } X_j \le \alpha\} & \text{if there exists } j \le n \text{ s.t. } j > \sigma_{k-1} \text{ and } X_j \le \alpha\\ n & \text{otherwise} \end{cases}$$

We define the number U of upcrossings of [a, b] by X_1, \ldots, X_n as the largest index i s.t.

$$X_{\sigma_{2i-1}} \le \alpha < \beta \le X_{\sigma_{2i}}$$

Example: n = 17. Fix $\omega \in \Omega$.

In this picture,

$$U(\omega) = 2$$
,

$$\sigma_1(\omega) = 4$$
, $\sigma_2(\omega) = 6$, $\sigma_3(\omega) = 10$, $\sigma_4(\omega) = 12$, $\sigma_5(\omega) = 16$, $\sigma_6 = \dots = \sigma_{17} = 17$

Theorem 18.1 (Doob's Upcrossing Theorem) — Let $(X_k)_{k=1,\ldots,n}$ be a submartingale w.r.t. $(\mathcal{F}_k)_{k=1,\ldots,n}$ and U be the number of upcrossings of [a,b] by X_1,\ldots,X_n . Then

$$E(U) \le \frac{E(|X_n|) + |a|}{\beta - \alpha}$$

Proof. Let

$$Y_k = \max\{X_k - \alpha, 0\}$$

Note that $\psi(x) = \max\{x - \alpha, 0\}$ is a convex and non-decreasing function $\psi : \mathbb{R} \to \mathbb{R}$. By Theorem 35.1 (iii), $(Y_k)_{k=1,\dots,n}$ is a submartingale w.r.t. $(\mathcal{F}_k)_{k=1,\dots,n}$. Note that σ_1,\dots,σ_n are stopping times w.r.t. $(\mathcal{F}_k)_{k=1,\dots,n}$ (exercise). Moreover,

- for k=1, $\sigma_k=\begin{cases}\min\{j\leq n;X_j=0\}&\text{if there exists }j\leq n\text{ s.t. }X_j=0\\n&\text{otherwise}\end{cases}$
- for k even,

$$\sigma_k = \begin{cases} \min\{j \le n; j > \sigma_{k-1} \text{ and } X_j \ge \beta\} & \text{if there exists } j \le n \text{ s.t. } j > \sigma_{k-1} \text{ and } X_j \ge \beta\\ n & \text{otherwise} \end{cases}$$

• for k odd,

$$\sigma_k = \begin{cases} \min\{j \le n; j > \sigma_{k-1} \text{ and } X_j = 0\} & \text{if there exists } j \le n \text{ s.t. } j > \sigma_{k-1} \text{ and } X_j = 0 \\ n & \text{otherwise} \end{cases}$$

Then U is the number of upcrossings of $[0, \theta]$ by Y_1, \ldots, Y_n .

Note that $1 \le \sigma_1 \le \sigma_2 \le \ldots \le \sigma_n = n$. By the Optional Stopping Theorem (Th. 35.2),

$$(Y_{\sigma_k})_{k=1,\ldots,n}$$
 is a submartingale w.r.t. $(\mathcal{F}_{\sigma_k})_{k=1,\ldots,n}$.

Hence,

$$E(Y_{\sigma_k} \mid \mathcal{F}_{\sigma_{k-1}}) \ge Y_{\sigma_{k-1}} \quad \forall k = 2, \dots, n.$$

In particular,

$$E(Y_{\sigma_k}) \ge E(Y_{\sigma_{k-1}}) \quad \forall k = 2, \dots, n.$$

It follows that

$$Y_n \ge Y_{\sigma_n} \ge Y_{\sigma_n} - Y_{\sigma_1} = \sum_{k=2}^n (Y_{\sigma_k} - Y_{\sigma_{k-1}})$$

$$\sum_{k=2}^{n} (Y_{\sigma_k} - Y_{\sigma_{k-1}}) = \sum_{\substack{k=2\\k \text{ or op}}}^{n} (Y_{\sigma_k} - Y_{\sigma_{k-1}}) + \sum_{\substack{k=2\\k \text{ odd}}}^{n} (Y_{\sigma_k} - Y_{\sigma_{k-1}})$$

Hence,

$$E(Y_n) \ge E\left(\sum_{\substack{k=2\\k \text{ even}}}^n (Y_{\sigma_k} - Y_{\sigma_{k-1}})\right) + E\left(\sum_{\substack{k=2\\k \text{ odd}}}^n (Y_{\sigma_k} - Y_{\sigma_{k-1}})\right) \ge 0$$

If $Y_{\sigma_{2i}} \geq \theta$, then

$$Y_{\sigma_{2i}} - Y_{\sigma_{2i-1}} \ge \theta$$

Since there are U such differences, we get

$$\sum_{e} \ge \theta U$$

and so

$$E(\sum_{\alpha}) \ge \theta E(U) \tag{3}$$

From (2) and (3), we get

$$E(U) \le \frac{E(|X_n|) + |a|}{\theta}$$

Finally,

$$E(Y_n) = \int_{\Omega} \max\{X_n - \alpha, 0\} dP \le \int_{\Omega} |X_n - \alpha| dP \le E(|X_n|) + |\alpha|$$
 (5)

So

$$E(U) \le \frac{E(|X_n|) + |\alpha|}{\beta - \alpha}$$

§18.2 Martingale Convergence Theorem

If $(X_n)_{n\geq 1}$ is a submartingale w.r.t. (\mathcal{F}_n) and

$$K := \sup_{n \ge 1} E(|X_n|) < \infty,$$

then there exists an integrable random variable X such that $X_n \to X$ a.s. Moreover, $E(|X|) \le 1$.

59

Proof

Fix $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$. Let $U_n^{\alpha,\beta}$ be the number of upcrossings of $[\alpha, \beta]$ by X_1, \ldots, X_n . By Theorem 35.4,

$$E(U_n^{\alpha,\beta}) \le \frac{E(|X_n|) + \alpha}{\beta - \alpha} \le \frac{K + \alpha}{\beta - \alpha} \quad \forall n \ge 1.$$

Note that $(U_n^{\alpha,\beta})$ is a non-decreasing sequence. Hence

$$\lim_{n\to\infty} U_n^{\alpha,\beta} \text{ exists (but may be } \infty).$$

By Monotone Convergence Theorem,

$$E(U_n^{\alpha,\beta}) \uparrow E(\lim_{n \to \infty} U_n^{\alpha,\beta}).$$

By (7),

$$E(\lim_{n\to\infty} U_n^{\alpha,\beta}) \le \frac{K+\alpha}{\beta-\alpha} < \infty.$$

Hence

$$\lim_{n \to \infty} U_n^{\alpha, \beta} < \infty \text{ a.s.} \quad (8).$$

For $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$, let

$$X^* = \limsup_{n \to \infty} X_n$$
 and $X_* = \liminf_{n \to \infty} X_n$.

Then,

$$X^* = \inf_{n \ge 1} \sup_{k \ge n} X_k$$
 and $X_* = \sup_{n \ge 1} \inf_{k \ge n} X_k$.

Claim

$$\{\omega \in \Omega : X_*(\omega) < \alpha < \beta < X^*(\omega)\} \subset \{\omega \in \Omega : \lim_{n \to \infty} U_n^{\alpha,\beta}(\omega) = \infty\}$$

with probability 0.

Proof of Claim

$$X_*(\omega) = \sup \inf_{k \ge n} X_k(\omega) < \alpha$$

implies

$$\forall n, \inf_{k>n} X_k(\omega) < \alpha.$$

Similarly,

$$X^*(\omega) > \beta$$

implies

$$\forall n, \sup_{k>n} X_k(\omega) > \beta.$$

By (8),

$$P(X_* < \alpha < \beta < X^*) = 0 \quad \forall \alpha, \beta \in \mathbb{R}, \alpha < \beta.$$

From here,

$$0 \le P(X_* < X^*) = P\left(\bigcup_{\alpha, \beta \in \mathbb{Q}, \alpha < \beta} \{X_* < \alpha < \beta < X^*\}\right) \le \sum_{\alpha, \beta \in \mathbb{Q}, \alpha < \beta} P(X_* < \alpha < \beta < X^*) = 0.$$

$$P(X_* < X^*) = 0$$
 and $P(X_* = X^*) = 1$.

Hence, $\lim_{n\to\infty} X_n = X$ exists.