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* These notes were created during my review process to aid my own understanding and
not written for the purpose of instruction. I originally wrote them only for myself, and they
may contain typos and errors . No professor has verified or confirmed the accuracy of these
notes. With that said, I’ve decided to share these notes on the off chance they are helpful to
anyone else.

%Any corrections are greatly appreciated.

§1 January 8, 2024

§1.1 Sums of independent random variables

Strong Law of Large Numbers: Let (X;);>1 be independent and identically distributed (i.i.d.)
random variables with finite expected value E[X;]. Define S,, = > ; X;. Then, the Strong Law
of Large Numbers states:

S

5 E[X;] almost surely as n — oo.
n

Kolmogorov 0-1 Law: If (X,,),>1 are independent random variables, then for any event A
in the tail o-field T, defined as

T=1{)o(Xn, Xnp1,---),

n=1

we have P(A) € {0,1}.

4 N
Corollary 1.1
If (X,)n>1 are independent random variables, and A = {limnHoo % = 0} and B =
{S,, converges}, then P(A4) € {0,1} and P(B) € {0,1}.
J
Theorem 1.2 (Kolmogorov Maximal Inequality) — Let (X,,)n>1 be independent random
variables with E(X,,) = 0 and E(X?2) < oo for all n. Then, for any a > 0,
1 2
P | max S| > o ) < —E(S;).
k<n o

Proof. Let Ay = {|Sx| > a} and note that {maxy<, |Sk| > a} = Uy_, Ar. We disjointize the

events Ay, by taking:
k—1

AkZAk\<UAz> for k=2,...,n,

i=1
and

k
flk:U/L fork=1,...,n.
i=1

It can be proven that

n
max |S;| > « is equivalent to Ag.
ma |Sk| > q 191 k

Note that:

E(Sﬁ):/gsgdpzz . SdeP:Z/A (S + (Sn — Sk)?) dP,
k= k k=1 k
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where (Ag)g=1,....n are disjoint.

E(S2%) >Z/ (S% +25,(Sn — Sk) + (Sn, — Sk)?) dP.

Since (S, — Sk)? > 0, this simplifies to:

E(S2) >Z/ (S% +25,(Sn — Sk)) dP

Noting that
k n
Sk(Sn — Sk) dP = / <ZX1> > X, | dp,
A 7 j=k+1

and since {X;}?; are independent, we have

(£x) (£ )]0

j=k+1

Thus,

Sk(Sp — Sk)dP =0,
Ag

and
It follows that:

where A = {|Sk| > a}, and the events Ay, are disjoint.

In summary, we obtained:
2
( Ak> § a2E S )

The conclusion follows from (1) and (2). O

Theorem 1.3 (Etemadi’s Inequality) — Let (X,,),>1 be independent random variables and
let S, = > ; X;. Then, for any o > 0, we have

P ( max [Sy| > 3a> <3 max P(|S,| > «).
1<r 1<r<n

Proof. Omitted. O

Theorem 1.4 (Kolmogorov's Criterion) — Let (X,,)n>1 be independent random variables
with E(X,) = 0 for all n and Y .-, E(X2) < co. Then, the series Y -, X,, converges
almost surely.

Proof: Step 1. Note that by Kolmogorov’s maximal inequality, for each integer n > 1 and € > 0,
we have

1 n+nr
< = 2
P <1I£7=axn |Snir — Snl > 6) <5 .ZHE(XZ ),
=N



where S, . — S, = Z?:t;ﬂ X; and (X;) are independent random variables with F(X;) = 0.

Letting r — oo, we get

o0

1
P Sptr — Sn < = E(X?).
(supSsr =50 > ) < 5 3 EOX2)

i=n+1

Finally, letting n — oo, we obtain

lim P (sup [Sntr — Sn| > e> =0 Ve>0.
1

n—oo r>

This completes the proof of the assertion.
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§2 January 10, 2024

§2.1 Convergence of Random Series continued

Proof of Theorem 22.6 (Continued from last time). Step 1 concluded with:

lim P (sup [Sntr — Sn| > e) =0 Ve>0. (1)
n—o0
Step 2: Define E,(¢) = {sup, ,>, [Ss — S| > 2¢} and let E(e) = ;" En(e).

Note that P(E, (e )) ¢P( (¢)) as n — 0.
Furthermore, observe that if |S; — S,,| > 2¢ then [S; — S,| > € or |Sg — S,| > € for some
i, R > n. To see this, assume by contradiction that both |S; — S,| < e and |Sg — Sp| < e. Then

|S; — Sr| =|(Sj — Sn) + (Sn — Sr)| < |S; — Sn| + |Sn — Skr| < 2,

which contradicts our assumption that |S; — Sgr| > 2e.
Hence,
sup |S; — Sg|>2c = ] (1S = Sal > €) or (|Sk—Sn| > €),
7, R>n J,R>n

and so, Ey(€) = U, {|Sj — Snl > €}, which we denote by A, (e).
Therefore, we can summarize that

1 2
P A4r < SE(SY),
R>n

Recall that A, (€) = {sup;,, |S; — Sn| > €} and by equation (1), P(A,(e)) — 0 as n — oo.
Since P(E, (e )) < P(A,(€)) by the squeeze principle, we have P(E,(e)) — 0 as n — oco. Thus,

P(E(e)) =0 Ve >0. (3)

Finally, define E = |J_. 4 E(€). Then, by countable additivity,

E) <) P(E(e) =

€>0

€>0

To summarize, we have shown that P(E) = 0 (equation 3).
Note that

E = {He > 0 such that Vn,sup |S; — S| > 26} = {(Sy)n is not a Cauchy sequence} .
jzn

Hence, P(E€) = 1. This proves that (S,), is a convergent sequence almost surely. O

Theorem 2.1 (22.7) — Let (X,,)n>1 be a sequence of independent random variables and
S, =, X;. If S, — S almost surely, then S, 25, 8.

Proof. The main effort will be to prove again that (1) holds. Then, exactly as in the proof of
Theorem 22.6, we conclude that (S,),>1 converges almost surely to a limit that we may call
T. Since S, == T implies that S,, — P, and by uniqueness of the limit, 7' = S almost surely.
Hence S,, — S almost surely.
Let us prove (1). The probability that the partial sums deviate from S by at least € can be
bounded by
P(|Snts = Sul 2 €) < P(ISns; = S| 2 5) + P(1Sn = S| = 5).



Taking the supremum over j > 1, we obtain

€ €
SUPP(‘Sn+j — S| >€) < SUPP(|S71+J‘ -S| > 5) + P(|S, — S| > 5)
j>1 j>1

As n — o0, both terms on the right-hand side tend to zero since S,, — S almost surely. Recall
that S, — S almost surely means that for every € > 0, P(|S,, — S| > €¢/2) — 0 as n — oco. Hence,
for € > 0, there exists Ne € N such that P(|S; — S| > €/2) < ¢ for all j > N,. Therefore, if
h > N, then sup;-, P(|S; — S| > ¢/2) < 4. Thus, limsup,_,.. sup;, P(|S; — S| > ¢/2) =0,
which proves (1).

We return to (5). Taking the limit as n — oo in (5), we obtain:

lim sup sup P(|Sp+; — S| >€) =0 (6)

n—oo j>1
By Etemadi’s Maximal Inequality, we have

P(lgljagn |Sntj — Sn| >€) <3 max. P(|Snyj — Snl > €/3).

Let n — oo; we get

P(sup |Sp4; — Sn| > €) < 3sup P(|Sn+; — Sn| > €/3) = 0 as n — oo by (6).
Jj=21 Jj=1

By the Squeeze Principle, (1) follows. O

Theorem 22.8 (Three Series Theorem). Let (X,,) be independent random variables, and
define X,(f) as the truncated random variable at level c:

" 0 if |X,|>ec

Here, ¢ > 0.

a) If 3 X,, converges almost surely, then 3= P(|X,,| > ¢), 32 E[X{?], and 3 Var[X”] converge
for all ¢ > 0.

b) If there exists ¢ > 0 such that all three series Y P(|X,,| > ¢), > E[Xff)], and > Var[X,(lc)]
converge, then > X,, converges almost surely.

Proof. In order that Y X,, converge with probability 1 it is necessary that the three series
converge for all positive ¢ and sufficient that they converge for some positive c.

Proof of Sufficiency. Suppose that the series (22.13) converge, and put mgf) = E[Xff)]. By
Theorem 22.6, Y (X,, — mgf)) converges with probability 1, and since msf) converges, so does

> X,. Since P(X,, # X,(f) i.0.) = 0 by the first Borel-Cantelli lemma, it follows finally that
> X, converges with probability 1. O

§2.2 Weak Convergence
Recall (from MAT5170) let (92, F, P) be a prob. space, and X : Q@ — R r.v. ie.

{XeAl={weX(w)ec A} e Fforany Ac R
Here R is the class of Borel sets of R.

e The law of X is a prob. measure on (R, R) given by:

wA) = pux(A) ' P(Xed) VAeRrR
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e The distribution function (c.d.f) of X is a function F = Fx : R — [0, 1] given by:
Fz)=P(X <z)forallz €eR

= p((=00, z])
where p is the law of X

Note that:

pl(=00,2)) = F(z™) = lim F(y)

w({z}) = F(z) — F(z™) the jump of F at x
Properties of F':
1. F is non-decreasing

2. F'is right-continuous

3. limyy oo F(z) =0, lim, 0 F(z) =1

Definition 2.2 (Convergence in Distribution) Let (X, ), be a sequence of random variables
defined on probability spaces (2, Fy, P,) and X be a random variable defined on the
probability space (92, F, P). We say that (X,,) converges in distribution to X, denoted as
X, L X or X,, & X, if for all points z € R at which Fx(z) = P(X < x) is continuous, we
have

Fx, (z)=P,(X,<z)— Fx(zr) as n— 00.”

®This implies that the cumulative distribution functions (c.d.f.’s) satisfy Fx, (z) — Fx(z), and for the
associated probability measures un, p, we have pp ((—oo, z]) = pu((—oo, z]) for all = such that u({z}) = 0.

Remark: If j,(—o00,z] = P,(X, < ) and p(—o00,z] = P(X < ) then p, = p.
Example 2.3 (Example 25.1). Let X,, be a sequence of random variables in F with P(X,, = 1).
Define
X, - n on — n'7
0 otherwise.

The c.d.f. of X, is:
0 ifx<n,
1 ifx>n.

For any z € R fixed,

n—»00 0 otherwise.

lim Fn(a:):{l if n >z, —0.

So we will be tempted to say that F,, = F where F(z) =0 for all z. But F' is not a distribution
function! (since lim, ,oc F(z) # 1)
Therefore, we cannot say F,, = F.
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§3.1 Convergence of Distributions, Probability, & Almost Sure

Definition 3.1 (Convergence in Distribution) Let X, : €,, — R be a random variable defined
on probability space (2, Fp, Py), and X : Q — R be defined on probability space (2, F, P).
We say that (X,,), converges in distribution to X if

Fx, (x) =Py(X, <z) > P(X <z)=Fx(z) forall points z€R st. P(X=2z)=0

We write X,, = X or X,, % X.
Remark: If p,(—00,z] = P, (X, <) and p(—o0,z] = P(X < ), then p, = p.

Definition 3.2 Let (X,,) be random variables defined on the same probability space (€2, F, P).
a) We say that (X,,) converges in probability to X if

lim P(|X,—X|>e)=0 Ve>0.

We write X, P x.

b) We say that (X,,) converges to X almost surely (a.s.) or with probability 1 if

P(lim X, =X)=1.

n— oo

We write X,, == X.

Theorem 3.3 (25.2) — We will prove the following two claims:
a) If X, » X as., then X,, 2> X.

b) If X,, & X, then X,, % X.

Proof. a) Fix e > 0. Let A, ={w € Q| | X,(w) — X(w)| > €}
Recall Theorem 1.1:

P(limsup 4,,) < limsup P(4,,) < liminf P(4,) < P(liminf 4,,)
It is enough to prove that
P(limsup A4,) =0 (4)
Recall that:

limsup A4,, = m U A, ={w]|3IN,Vn > N,w e A,}
N=1n>N

={w|3IN,¥n > N, | X, (w) — X(w)| > €}

Note that:
oo
(limsup 4,)° = | ) () 45 = {w | Ve >0,3N,¥n > N, | X, (w) — X (w)| < &}
N=1n>N

by De Morgan’s Law, which implies {X,,} converges to X hence P((limsup 4,)¢) = 1. So (4)
holds. Let X € R be such that P(X = z) = 0. Let gg be arbitrary.
b)
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1. Note that:
[Xo <0} C{IX0— X| 2} U{X <o e}

To see this, assume by contradiction that | X, — X| <eand X >z +¢. Then X,, — X > —¢
and X > x + . Hence

Xp=Xpn—-X)+X>—-—<c+(z+e) =1
This is a contradiction.
2. From 1, we deduce that:
P(X,<z)<P(|X,—X|>e)+ P(X <z —¢)
which can be written as:

PX<z—-¢)< lim P(X, <z)< lim P(X,, <xz+4¢) foralle>D0.

n—oo n—oo
3. Finally, let e — 0. We get

P(X <z)< lim P(X, <z)<P(X <)

n—oo
Hence,
lim P(X, <z)=P(X <uz).
n—o0
This completes the proof since P(X = z) = 0. O

Theorem 3.4 (Convergence in Distribution Implies Convergence in Probability) — Let (X,,)
be a sequence of random variables defined on the same probability space. If X, 4 X for all
w € Q, where a € R, then X, LS

Proof. Let € > 0 be arbitrary. We want to prove that P(|X,, —a| >¢) — 0 as n — .
Note that

{Xpn—a>e}={X,,>a+e}U{X,<a—-c}={X, >a+e}U{X,<a—¢}

and
P(|X,—al|>e)=P(X,>a+e)+ P(Xp,<a—¢e) (7)

We know that X, % X i.e., Fx, (z) — Fx(z) for all z € R where P(X = z) =0 (i.e., Fx is
continuous at x).

Recall that

0 ifzx<a,
Fx(m):P(X<x):{1 ifz>a

Hence
P(X,, <z)—0forall z < a.

and
P(X, >z) — 1 for all z > a.

We let n — oo in (7):

PX,>a+e)=1-P(X,<a+e)=1—Fx, (a+e)—>1-0=0,
P(X,<a—¢)<P(X,—al >e)—0.

In summary, both terms converge to 0. This proves that P(| X, —a| >¢) = 0asn — oco. O

10
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Theorem 3.5 (Slutsky's Theorem) — If X, 4 X and Y, — X, £, 0, then Y, 4 x.

Proof. Let F be the distribution function of X, i.e., F(x) = P(X < z), and let = be a continuity
point of F, i.e., P(X =) = 0. Let € > 0 be arbitrary. Choose 3’ and y” continuity points of F'
such that ¢ <z <y and

F(z)-F(y)<e and F(y")—F(z)<e

where
li%n F(y)=F(z—)=F(z) and liin F(y) = F(z+).
yiz ylz
Let ¢ > 0 be such that y' is  — € and y” is x + . Similarly to (5) and (6), it can be proved
that:
P(X,<y)-P(X,—X|>¢e) <P, <)< P(X, <y")+P(X,— X|>¢e) (exercise)
Taking n — co, we get:

P(X <y)= lim P(X, <z)= lim P(X, <y")<FE')=F(z)+e¢

n—oo n—o0
Finally, letting ¢ — 0, we get:

F(z) = lim P(Y, <z) < lim P(X, <z) < F(z)

n—oo n—o0
This proves that:
lim P(X, <z)=F(x).

n—0o0

11
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84 January 17, 2024

84.1 Fundamental Theorems

Theorem 4.1 (Skorohod Representation Theorem) — Let {u,,} and p be probability measures
on (R, R) such that p, = u. Then there exists a probability space (€2, F, P) and random
variables (Y;,), on this space such that %

e The distribution of Y,, is j, for all n, i.e., PoY, ! = pu, for all n.
e Distribution of Y is pu.
o V,(w) = Y(w) for all w € Q.

%Recall:
(PoX 1) (A) L' P(X~1(A)) where X 1(A) = {w € Q; X (w) € A}

Proof: Omitted.

Theorem 4.2 (Continuous Mapping Theorem) — Let h : R — R be a measurable function
and Dy, be the discontinuity points of h. Let {u,}, u be probability measures on (R, R) such
that p, = p. Assume that p(Dp) = 0. Then

.unoh71 = poh™".

Recall:
hiR—R poh H(A) L ur1(4)
where
h™1(A) = {z € R;h(x) € A}.

a

“Remark: Note that D; € R. See the proof in the textbook.

Proof. By Theorem 25.6 (Skorohod Representation Theorem), there exists a probability space
(', F', P") and random variables {Y,,, Y’} on this space such that PoY, ! = j1,, and PoY ! = p,
and Y, (w) = Y (w) for all w € Q.
Let w € Q' but Y(w) ¢ Dy. Then h is continuous at Y (w) and hence h(Y, (w)) = h(Y (w)).
Denote by 2, the set {w € Q';Y (w) ¢ Dy}. Then

P(QL) = P({w € Q.Y (w) € Dn}) = P(Y (D)) =1 = P(Y ™' (Dy)) = 1 — u(Dy) = 1.

and so P(€) = 1. This proves that h(Y;,) — h(Y") almost surely.

Hence h(Y;,) 4, h(Y) by Theorem 25.2 (a.s. convergence implies convergence in probability),
which in turn implies convergence in distribution. This means that Po (h(Y,,))~* — Po (h(Y))~!.
This proves that p, o h™* — poh™1. O

Corollary 4.3

If X, % X and h : R = R is a measurable function such that P(X € Dy) = 0, then
h(Xn) & h(X).

Proof. Note that X, 9% X means that fn, — p where Po Xt = p, for n and Po X! = p,
and P(X € Dy,) = (Po XY (Dy) = u(Dy,). Then by Theorem 25.7, i, oh™* — poh™1. So

h(Xn) % h(X).
Law of h,: Law of h(X) (see below). O

12
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Recall:
Po (h(X)) ' (A) = P({w € Q;h(X (w)) € A})
= P({we QX (w) e h™'(A)})
=(PoX"1)(h1(4))
— u(h~(A))
— (wo h™")(A).
4 N\
Corollary 4.4

Suppose that X, i a, where a € R is a constant. Let A : R — R be measurable and
continuous at a. Then h(X,,) R h(a).

Proof. By Theorem 25.2, X,, Ei a, hence, we let X(w) = a for all w € Q. Note that
{X € D} ={a € Dp} = @, so P(X € Dy) =0. So by Corollary 1, h(X,) 4, h(a). By

Theorem 25.3, h(X,,) R h(a). O
- J

Example 4.5 (25.8). Suppose that X, % X and {an},{bn} are real numbers such that
a, = a €Rand b, —beR. Then

4 X + by 5 aX +b.
(See also problem 25.2 for a generalization.)

Proof. Recall Slutsky’s Theorem: If X, 4, X,and Y, — X, £, 0, then Y, 4 x.

Example 25.7: If X,, % X and s, — 0, then s, X,, % 0.
Note that

(@n X +bn) — (X +b) = (an — a) X + (b — b) 5 0 (by ex. 25.7)

by TRS 25.5.
In addition, because h : R — R given by h(z) = ax + b is continuous since X, 4, X, we also
have h(X,) % h(X), ie.,
anXn + by LN +b.

In summary, we proved:

(anXn +by) — (X +b) 50 (which is equivalent to P — 0)
anXy, + by, i) aX +b.

By Slutsky’s Theorem, we can take the sum and conclude that a, X, + b, i> aX +b. O

Theorem 4.6 (Portmanteau Theorem) — Let u,, u be probability measures on R. The
following statements are equivalent:

(1) pn — p
(ii) [ fdpyn — [ fdp for any f: R — R which is continuous and bounded

(iii) pn(A) — p(A) for any set A € R which is a continuity set, i.e., u(0A) = 0 where
0A = A\ A° is the boundary of A

13
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Proof. (i) = (ii): By Skorohod Representation Theorem, there exists a probability space
(Q, F', P") and random variables {Y,,, Y} on this space such that:

Pan_lz,un and PoY ! =

and Y, (w) = Y(w) for all w € Q.

Let f : R — R which is continuous and bounded. Then the discontinuity set of f is Dy = &,
hence p(Dy) = 0.

Moreover, if Y, (w) — Y (w) for all w € @', then:

/fdun /f Y, )dP' — f Y)dP' = /fdﬂ

by Bounded Convergence Theorem (Thm 16.5) and Change of Variables for P o Y, ! and
PoYy~1, O

Recall: Change of Variable (21.1)

QL RLR O f(X)=foXx

/f(X)dP: / fd(Po Xt
Q R
We can also write this as:

/ F(X())dP(w) = / f(@)d(P o X~ Y)(x)
Q R

14
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§5 January 22, 2024

§5.1 Intergration to the limit

Theorem 5.1 (25.11) — If X, 4, X, then E(|X,]|) is bounded above by liminf F(|X,]|). If
X, % X, then E(|X,|) < liminf,_ o0 B(| X))

Proof. Let u, be the law of X,,. Then pu,, — p where p is the law of X.
By Skorohod Representation Theorem, there exists a probability space (Q', F', P’) and random
variables {Y},,Y} on this space such that:

PoY, ' =y, and
PoY 1=y,

and Y, (w) = Y(w) for all w € @'. By Fatou’s Lemma, E’'(|Y]) < liminf,_,o E'(|Y,]). (Here
E' is expectation w.r.t. P') But E(|X|) = E'(|Y]) and E(|X,|) = E'(|Y,]) for all n. Let u,
be the law of X, and p the law of X. By the Skorohod Representation Theorem, there exists
a probability space (€, F', P') and random variables {Y;,} and Y on this space such that Y,
converges to Y almost surely and the law of Y,, under P’ is u,, and the law of Y under P’ is p.
By Fatou’s Lemma, E'(|Y]) < liminf E’(|Y,|). Here E’ denotes expectation with respect to P’.
But E(|X,|) = E'(|Ya]) and E(|X|) = E'([Y]). 0

The Fatou Lemma (Thm 16.3) states that if {f,} are non-negative measurable
functions, then [liminf f,dy <liminf [ f,du.

Recall (MAT5170) Fatou’s Lemma (Thm.16.3). Let (€2, F, 1) be a measure space such that
() < co. Assume (f,) are measurable R-valued functions such that f, — f almost everywhere

(w.r.t. ).
If (f,) is uniformly integrable and f is integrable, then

/Q Fodp — /Q fdy.

Theorem 5.2 (15.12) — If X, 4 X and (Xp) is uniformly integrable, then X is integrable
and E(X,) = E(X).

Proof. Let p, be the law of X,, and p the law of X. Then u, — p. By Skorohod Representation
Theorem, there exists a probability space (€', F/, P') and random variables Y,,, Y on this space
such that the law of Y,, under P’ is p, and the law of ¥ under P’ is yu, and Y, (w) — Y (w) for all
weN.

By Fatou’s Lemma, since E(]X,|) is uniformly integrable, it is bounded, hence E(X,) —
E(X). O

Recall (MAT5170) Fatou’s Lemma (Thm.16.3). Let (Q, F, u) be a measure space such that
() < co. Assume (f,) are measurable R-valued functions such that f, — f almost everywhere

(w.r.t. p).
If (f,) is uniformly integrable and f is integrable, then

/Q Fodpt — /Q fdu.

Theorem 5.3 (15.12) — If X, 4 X and (X,) is uniformly integrable, then X is integrable
and E(X,,) — E(X).

15
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Proof. By Skorohod Representation Theorem (as in the proof of Th.25.11), there exists a
probability space (€', 7', P’) and random variables Y,,, Y on (', F', P') such that

e the law of Y,, is p, (where pu, is the law of X,),
e the law of Y is p (where u is the law of X),
e V,(w) = Y(w) for all w € .

Note that Y;, are uniformly integrable since

/HWWZ/ mmP:/ mmpi/mmp
Q {lY|>a} {IX|>a} Q
when |Y;,| > a.

Change of variables (Th.16.13)

[ #0dP = [ f@aPox @) = [ s

By Theorem 16.14, E'(Y,,) — E'(Y). This gives us the desired conclusion since:
E'(Y,) = E(X,,) for all n and E'(Y) = E(X).

Here E’ is expectation with respect to P’. O

85.2 Characteristic Functions

Definition 5.4 a) Let i be a probability measure on (R, R). The characteristic function of
is:
o(t) = / it (da) = / cos(tz)u(dz) + i / sin(tz)u(dz)
for all t € R.
(Recall: €' is defined as cost + isint for all ¢ € R.)
b) Let X : Q@ — R be a random variable on a probability space (2, F, P). Let u be the
law of X. Then the characteristic function of X is:

ga(t):E(e“X):/ReimdP:/R e p(dx)

Observation: Since |e'®|? = cos?(tx) + sin®(tx) = 1,

olt)] = \ [ utae)

1. ¢(0) = E(e"°) = E(1) = 1

< [l lutda) = u(®) = 1.

2.  is uniformly continuous on R:
/( i(t+e)r ztw)u(dx)
R
< /|ei(t+a)x _ eitﬂcllu(dx)
R
= [l e~ u(do)
R

= / le®®® — 1|u(dx) — 0 by Bounded Convergence Theorem since

lp(t+e) — ()] =

e — 1| < [e"**| +1=2 for all z as e — 0.

16
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§6.1 Computing Characteristic Function

Example 6.1. Example: Let X ~ N(0,1). We aim to compute ¢(t) = E[e?*X] for t € R.
The characteristic function ¢(t) is given by:

— (it)"¥ k
Sﬁ(t)zz i E[X"] (1)

k=0
We use the property: for differentiable functions g : R — R,
Elg'(X)] = E[Xg(X)] (2)

Since

Bl (X)) = [ @) =e T o= [ gaee ¥ do = BlXg(X)]

by integration by parts.
Applying (2) for g(z) = 2, then ¢'(x) = kxz*~1. So (2) becomes:

EkX*1] = E[X - X*1] (3)
Hence,
E[X*] = kE[X*"1] for k>1 (4)

By symmetry of the standard normal distribution, all odd powers of X have an expected value of
zero, i.e., E[X*] = 0 for k odd.
For even powers, using the property from before:

k=2: E[X? =1,

kE=4: E[X' =3 E[X? =3,

k=6: E[X%=5-E[X!=5-3=15,
and so on.

In general, for k = 2n:
E[XZ”] =1-3-5---(2n—1) = (2n— 1)!!' (double factorial)

Characteristic Function: Returning to the characteristic function:

N T (1)L = (1
t) = E[X“"] = 2n — DI =
elt) =2 X 2 amr =Y D g
n=0 n=0 n=0
where we used the relation (2n)!/(2n — 1)!l = 2™nl.
Recalling the Taylor series expansion for et/ 2. we have:

IO Y VT2 G < Vi

n! 2
n=0 n=0

Thus, ¢(t) = e~ /2.

Remark: The characteristic function of a random variable aX + b (where a,b € R) is given by:
vaxso(t) = E [eit(ax%)} = eI [eiteX] = eitbyy (at).

This expression uses the fact that the characteristic function of X evaluated at at can be modified

17
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by a shift in the variable corresponding to the addition of b.
In particular, if @ = —1 and b = 0, the characteristic function of —X is:

p_x(t) =px(—t) forallteRR.

Next goal: Our next goal is to show that the characteristic function determines uniquely the
law (or the distribution) of a random variable.

Theorem 6.2 (Theorem 26.2.) — Two parts of the theorem:

(a) Let u be a probability measure on R. Let ¢(t) be the characteristic function of u. If
a,b € R are such that u({a}) =0 and p({b}) = 0, then

) T e—ita _ o—ith
pla ) = fim o= [ ity ar

Convention: In this formula, the function ‘Bﬂmz;t‘f“b is defined for ¢ = 0 to be equal

to b — a (by 'Hopital’s Rule).

(b) Let p and v be probability measures on (R, B(R)). If 4 and v have the same charac-
teristic function, then p = v.

Proof. (a) Let Iy = = [ e"—c™ citegs Then, by Fubini’s theorem,

or J-T it
1 T e—ita _ o—ith oo
Ir=— - “wy(d dt
HE T T </0f H ””)
o 1 T e~ ita _e—itb "
= — —e"dt d
/_ . <2w /_ . it uidz)
~ [ or@ntr)
We can apply Fubini’s Theorem since:
—ita __ ,—itb ) —ita __ ,—itb )
e .e _eztw:e '6 _|ezta:|§b_a
it it
|€—ita _ e—itb| _ ‘e—ita (1 _ eit(b—a))‘ _ |e—ita| ) ‘1 _ eitl-a)| < t(b— a)
And
T

/_T(b — a)p(dx)e’™ < (b—a)(2T)e

(Note: It was crucial for this argument to work with [-T,T].)
We compute ¢r(x) explicitly, as follows:

1 T _it(z—a) T _it(z—b)
or(z) = — / e dt—/ C
2 | J_pr it _r it

1 T cos(t(z — a)) T sin(t(z — a))
= — [z/ 7t dt+’L/ dt‘|

o t

v /T cos(t(z — b))dt B i/T sin(t(x — b))dt

r t o t

1 _ T sin(t(x — a)) o T sin(t(x — b))
i l(l)'2/0 fdtJr%zQ/o tdt]

18



1 T sin(t(z — a)) T sin(t(z — b))
V e ) [ snltr =) dt]

w- [ Z br (@) u(dz)

We want to let T — oo, and apply the Dominated Convergence Theorem (D.C.T.)
It can be proved that

Recall:

T . 5 if0>0
ot
1m1/ sl 0 lo ire=o
T— o0 0 t .
-5 if0<0
In our case,
T . -5 ifr<a
t —
Tlim Mdt: 0 ifx=a
—00
0 g ifx>a
T . -5 ifx<b
t(x —b
Jim Sm(f Dar=d0 " itz—b
—00
0 T ife>b
Hence
0 ifz<a
% ifz=a
lim ¢p(z) =491 fa<z<b
T— o0
% ifx=5
0 ifz>b
Recall:

m= [ Z br () u(dz)

We want to let T — oo, and apply Dominated Convergence Theorem (D.C.T.)
It can be proved that

- T >0
ot
1m1/ sim@) . _Jo re—o
T—o00 0 t .
—T 0 <0

Next time!
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§7.1 Characteristic Functions Continued

4 )
Corollary 7.1
Let u be a probability measure with characteristic function ¢. If
> t
[0y o
—oo |l
then p has a continuous density f given by:
1 > —itx 9
f(z) = T e "p(t)dt (Inversion Formula)
™ — 00
- J

Proof. Let F(z) = pu((—o0,z]) be the cumulative distribution function corresponding to . We
have to prove that F is differentiable. Then, for ¢ > 0,

Fla+e) = Fle)  pl(—oo,a+e]) = u((=00,2)) _ pl(a,x + <))

S 9 9

1 T _—it(z+e) _ —itz
= lim —/ ¢ ¢ o(t)dt

T—o0 27 -T ite

By Theorem 26.2, as T" — oo, this limit exists and hence, the function F is differentiable. By
D.C.T.,

Plotd Pl _ L [~ o e @ (1)

€ T or oo ite

To justify the application of D.C.T, we note:

—itx __ efit(w+s)

—itx 1— —ite .
e - _ e - e ™) < |t| (since |1 — e~ "] < |te])
ite ne
Recall:
L. (it)* o 2pn
it _ (Zk? <min{|| o |! }
i (n+ 1) n!
efitac _ efit(qug) |t€‘
- (p(t)’ < H|<p(7j)| = |¢(t)| and |p(t)] is an integrable function.

Note that (2) also holds for € < 0. By another application of D.C.T.,

_ 00 —ite __ ,—it(x+e)
F'(l’) = lim M = i/ lim € .e cp(t)dt
e—0 € 21 J_e—0 ite
1 [ _,
= 2—/ e "o (t)dt
™ —00

20
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Note that f is continuous on R:

1 > —it(x 1 > —itx
fata—f@l= g [ e pma— g [ etama
27 J_ oo 2
1 o0 . )
_ 27/ (e—zt(m+s) _ e—ztm)(p(t) dt‘
™ oo
1 > —itx [, —ite
<o leEe™ = Dlled)] dt
1 005 .
=— le=™ — 1| |o(t)|dt by D.C.T. as e — 0.
2 J_ o

. If X ~ N(0,1), then X has density f(z) = \/%76_27 x € R and characteristic function:

2
o(t) = e T (used the power series expansion).

1 ifzel0,1],
0 ifz¢[0,1]

1 it
. e —1 1, .
o(t) A e dx m <or it(e ) )

. If X ~ Exponential(\), then X has density f(z) = Ae "W (g o)(z) and characteristic
function:

. If X ~ Uniform(0,1) then X has density f(z) = { and characteristic

function:

00 (it—N)x |*°
t) = itx —)\rd _ €
o(t) /O e EE TN

. If X ~ Double-Exponential, then X has density f(x) = %e"”ﬁ',m € R and characteristic
function:

1
=1 (since the limit as  — oo is 0).
—1

0

w(t)=/ et §e_|x‘dx

_ 1 (1— 1t)md 0 —(1+it)x
—2< a:—l—/ooe da:)
_1
_2< 1+zt>

1 +iit+1—at

2( 1+ ¢2 )
_ 1
142

5. If X ~ Cauchy, then X has density f(z) = - 1+x2 , € R and characteristic function:

S B |
t: itx d
o) = [ e W—Hﬁ

1
—_ 7/ —zt:v d.’E
s
1 —itx 1
= — e —
i 1+ (—it)?
_ 1 e—itm
Coml4t2

21
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(Note that the characteristic function of a Cauchy distribution is an exercise in some texts
and can be derived using complex analysis techniques.)

Theorem 7.2 (Continuity Theorem) — Let {u,} and p be probability measures on R, with
characteristic functions {p,} and ¢ respectively. Then

iy, — g if and only if ¢, (t) — ¢(t) for all ¢t € R.

Proof. Part 1 ”Only If’: Suppose that p, — u. Then, by Portmanteau theorem, we know that
/fdun — /fdy for all f: R — R continuous and bounded.

In our case,

o0

waw:/meﬁ“mwmw:/mcwmmmwm+i/ sin(t2)un (de)

— 00 — 00 — 00

implies that as n — oo,

/ " cos(ta)un (d) + i / " sin(tw) n (d) — / e ) = o(8).

— 00 —00 — 00

Part 2 ”If”: We do not discuss this. It uses "tightness”. Details are in the book. O

§7.2 Central Limit Theorem

Theorem 7.3 (Lindeberg—Lévy Theorem) — Let {X;};>1 be a sequence of independent and
identically distributed (i.i.d.) random variables, with E[X?] < co. We denote y = E[X;] and
0? = Var(X;). Let S,, = Y1 | X;. Then

Sp—np d
2n TR 4 g N(O0,1).
o (0,1)
1 T g—ita_—itd <
Proof. Let I = 5- [, ©<——=%—(t)dt. Then, by Fubini’s Theorem,
1 T e—ita _ o—itb  poo
Ir=— . — itr o (dx) dt
"o ), it /_Ooe pldz)

0 T _—it(a—z) _ ,—it(b—x)
:/ <1/ © ¢ dt) p(dx)
oo \ 27 J_p it

= [ et

—00

. 1 T e—it(afm)iefit(b—m)
where ®7(z) is defined as 5- [~ =

We can apply Fubini’s Theorem since:

dt.

efzta _ efitb

it

] e*it(afz) _ e*it(bfz)
. eztm S b— a,

1t

| ita _ eitb| _

. 6¢tb(eit(afb> - 1)’ < |t(b — a)|,

which is integrable over ¢ in the interval [T, T] and measurable with respect to .
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Theorem 7.4 (Central Limit Theorem for Triangular Arrays with Lyapunov condition) — For
each n > 1, let X1, Xp9, ..., Xun be independent random variables with E(X,,;) = 0 for all
i=1,...,n and

o2, =E(X2)<oco Vi=1,...,n.

Let S, = Y1 | Xp; and A2 =E(S2) = > | 02,. Assume that A\2 > 0 for all n. Suppose
that there exists § > 0 such that

E(|Xn|>T) < oo foralli=1,...,n,
and .
nh_)rr;o % ;]E(|Xm|2+5) =0 (Lyapunov condition).
Then g
2n 4 7 ~ N(0,1).

n

Proof. 1t suffices to show that the Lyapunov condition holds, and then we apply Theorem 27.2.
We have:

1 & 1 &
2 Z/ XnidP = )\TZE (XX zeAn)]

n,_q {|Xni|>exn}
n
< 12 5 ZE UXM’|2+6]
N i=1

1

- E
eIN2t0

n
Z Xni|2+5‘| — 0 by the Lyapunov condition.
i=1

Hence the Lyapunov condition holds. O
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88.1 Section 33: Conditional Probability (continued)
Example 8.1. If P(B) >0, G =c({B}) — {0,9Q, B, B}

[P(A|B) ifweB
f(w)_{P(A|BC) if we B

We prove that f satisfies conditions (i) and (ii) from the definition of P(A | G), i.e.,
(i) f is G-measurable (we checked this last time)

(i) [.fdP=P(ANG) VG eg

/fdp:P(AmG) VGG (1)
G

Last time, we checked that (1) holds for G = () and G = Q.
Assume that G = B. Then

/fdP:/ (P(A| B)1g + P(A| BY)1pe)dP
B B

- B  P(ANB)

_ /BP(A | B)AP = P(A| BYP(B) = “5 il P(B)

— P(ANB)

This proves (1) for G = B.
The fact that (1) also holds for G = B¢ is similar (exercise).

Example 8.2. Let (2, F, P) be a probability space, A € F, and G = o({B;}i>1), where {B;};>1
is a partition of , B; € F, P(B;) > 0 for all i > 1. We claim that

P(A|G)=Y_ P(A|B)lp, as. (2)
i>1
We prove (2): Let f =3, P(A| B;)1p,. We check that f satisfies conditions (i) and (ii)
from the definition of P(A | G).

Condition (i): f is G-measurable since 1p, is G-measurable for all ¢ > 1.
Condition (ii): We have to check that

/fdp:P(AmG) VGG (1)
G
Note that G = {Ujel B;|IC {1,2,...}}. Taking G = {J;¢; Bj, we have

/fdP:Z/ fdP:Z/ P(A| B;)dP =) _P(A| B;)P(B;)

G jel Bj jel B; jeI

:ZP(AﬂBj):P(Aﬂ (UBj)) =P(ANG)

JeT jer
This proves (1).
Example 8.3. If A € G, then P(A|G) =14 as.
Recall:
1 fweAd
1 =
A@) {o ifwe A

Proof: We show that 1,4 satisfies conditions (i) and (ii) from the definition of P(A | G).
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(i) 14 is G-measurable since A € G.
(ii) Let G € G be arbitrary. Then

/ 14dP = / IGQAdP:P(GmA)
G Q
Example 8.4. If G = {0, Q}, then P(A|G) = P(A) as.

Proof: Let f = P(A). We prove that f satisfies conditions (i) and (ii).
(i) f is G-measurable since f is a constant random variable and so VB € R,

o . o itPa)eB
f (B)—{weﬁ,f(w)eB}—{@ ria e n <Y
(ii) We have to show that
/fdp:P(AmG) VGG (1)
G
We have two cases:
e G =10. Then
/fsz/P(A)szOzP(Aﬂ@):P(AﬁG)
G 0
e G =0. Then

/fdp:/P(A)dP:P(A):P(AmQ):P(AmG)
G Q

Definition 8.5 We say that event A is independent of the o-field G if A is independent of G,
VG € g, i.e.,
P(ANG)=P(A)-P(G) VGeg

Observation: Any event A is independent of the trivial o-field G = {0, Q}. (Exercise)

Example 8.6. The event A is independent of § < P(A|G) = P(A) as.

Proof: = Assume that A is independent of G. Let f = P(A). We prove that f satisfies
conditions (i) and (ii) from the definition of P(A | G).

(i) f = P(A) is a constant random variable. Hence, f is G-measurable.

(ii) We have to check that

/fdp:P(AmG) VG € g (1)
G
Let G € G be arbitrary. Then
/ Jdp = / P(A)dP = P(A)/ dP = P(A)- P(G) = P(AN G)
G G G
So (1) holds.

< Suppose that P(A | G) = P(A) a.s. Let G € G be arbitrary. Then, by property (ii) of
conditional probability, we know that

/ fdP =P(ANG), where f=P(A)
G

Note that
/ fdP = / P(A)dP =P(A) - P(G)
G G

So, P(A) - P(G) = P(ANG).
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Definition 8.7 Let (2, F, P) be a probability space, A € F. Let X : Q — R be a random
variable (i.e., X is F-measurable).
Let G = o(X) = {X~1(B); B € B(R)} where

X 1B ={weMXw)eB}={XecB}

We say that P(A | G) is a version of the conditional probability of A given X, and we
denote this by P(A | X), i.e.,

P(A|X):=P(A|o({X}))
This means that:

(i) P(A] X) is o(X)-measurable
(i) [pP(A|X)dP=PANn{X e B}) VBeBR)

Theorem 8.8 — Let (X, X, ) and (Y,Y,v) be measure spaces. p and v are o-finite.
X XY ={(z,y);ze X,y Y}

X®Y=0{AxB;Ac X,BeY}) product o-field
If Fe X®)Y, then

E,={yeY;(z,y) e B} VzxeX
EVY={zxeX;(x,y) € E} YyeY

Proposition 8.9. (i) If F € X ® Y then

E,eY VreX
EveX VyevY

(i) If f: X xY — R is X ® Y-measurable then
y — f(z,y) is Y-measurable Vi € X
x> f(x,y) is X-measurable Vy €Y

Proposition 8.10. For any set £ € X ® )

x +— v(E,) is X-measurable
y — w(EY) is Y-measurable

Define
7(E) = /X V(E,)u(dz) and n"(E) = /Y W(EY) 0 (dy)

Then 7’ and 7" are measures on (X x Y, X ® J) and
m'(E)=n"(E)=:m(E) VE€X®)Y
Moreover, 7 is the only measure on X X Y s.t.
m(AXx B)=pu(A)-v(B) VAe X,VBe)Y

We denote m = p x v and we say that 7 is the product measure.
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Theorem 8.11 — (i) If f: X x Y — [0,00) is X ® V-measurable, then

g: X >R, g(x)= / f(x,y)v(dy) is X-measurable
Y

h:Y =R, h(y)= / f(z,y)u(dz) is Y-measurable
b's

A (/y J (x’y)”dy)) ) = | ( | s y)u(dw)> v(dy)

- / £, w) (% v)(de, dy) (4)
XxY

(i) If f: X xY — R is X ® Y-measurable and integrable w.r.t. p x v, then

and

g(x) is finite for p-almost all z € X, ¢ is X-measurable
h(y) is finite for v-almost all y € Y, h is Y-measurable

and (4) holds.
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§9.1 Conditional probability continued

Theorem 9.1 — Let X and Y be independent random variables and g = P o X!,
v=PoY ™!l Then
a)
P((X,Y)€B) = / P((z,Y) € B)u(dz) VB € R? (2)
R
b)
P(XeA (X,Y)eB)= / P((z,Y) € B)u(dz) VAER VB € R? (4)
R

Proof. a) Since X,Y are independent, the law of (X,Y) is u X v, i.e.,
Po(X,Y) '=(PoX Y )x (PoY H=pxv

Recall:
B, ={y € R;(z,y) € B} is the section of B at z

By Fubini’s Theorem,

(a3 (B) = [ v(B.)uldo) 1)
R
Note that
(kxv)(B)=P((X,Y) € B)
v(By) = (PoY ')(B,)=P(Y € B,) = P({w € ;Y (w) € B,})
So
v(B;) = P{w € Q;(z,Y(w)) € B}) = P((z,Y) € B)
Hence (1) gives our desired conclusion for a). O

Proof. b) We write (1) for set B replaced by B’ = (A x R) N B, relation (1) becomes:
(o 0)(B) = [ v(Butdo) @

Note that

(uxv)(B') = (Po(X,Y)")(B') = P(X,Y) € B') = P((X,Y) € (AxR)NB) = P(X € A,(X,Y) € B) = LHS of (4)

0 ifexg A

B ={yeR;(z,y) e B}Y={ycR;z € Aand (z,y) € B} =
> =1y (z,y) P={y z € Aand (z,y) € B} {Bx foe A

)0 ifxg A
”(BI)_{V(B_T) ifreA

So
_Jo ife g A
)= P((z,Y)eB) ifzecA

Relation (3) gives exactly (4).
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Theorem 9.2 — Let X and Y be independent random variables, and J C R.
Consider the function

f(z)=P((z,Y) e J) forall zeR.

a) Then
P((X,)Y)eJ|X)=f(X) as.

b) Let M = max(X,Y). Then for all m € R,

PM<m|X)=1{X <m}P(Y <m) as.

Proof. a) We check that f(X) satisfies conditions (i) and (ii) from the definition of conditional
probability. Here G = o(X).

(i) f(X) is o(X)-measurable. This is clear.

(ii) Let G € o(X) be arbitrary. Then G = {X € H} for some H € B(R). Let Po X! = p.

/ f(X)dP = / f(X)dP = / f(z) p(dz) (change of variable, Th 16.13)
G {XeH} H

/ f(X)dP = / f(X(w)1lg(w)dP(w) :/ f(z) u(dx) :/ P((z,Y) € J)u(dz) (definition of f)
G Q H H
=P(X eH (X,Y)eJ) (by (4)

In summary, we proved that:

/ F(X)dP = P(ANG) VG € o(X)
G

O
Proof. b) We use the result in part a). Note that
{M <m}={max(X,Y)<m}={X <m,Y <m}={(X,Y) e J}
where J = {(z,y) € R*}; 2 <m and y < m}.
By a),
PM<m|X)=P(X,Y)eJ|X)=f(X) as. (5)
where f(z) = P((z,Y) € J).
Let us calculate f(z):
f@)y=P((z,Y)e J)=P({we %2 <mand Y(w) <m})
0 ifz>m
- =1 P(Y <
{P(ng) ifz<m tzsm}P( ™
Then
f(@) = Lecmy P(Y <m)
Relation (5) becomes:
O

Recall: (MAT 5170): A family P of subsets of a set € is called a 7-system if it is closed
under finite intersections, i.e., if A, B € P then AN B € P.
If 4 and v are measures on (£, F) and u(A) = v(A) for all A € P, then p=v.
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Theorem 9.3 — Let (Q, F, P) be a probability space, G C F is a sub o-field of F, A € F.
Assume that G = o(P) where P is a m-system and Q = J,~; 4; with 4; € P.
Let f:Q — [0,00) be a function which satisfies: B

(i) f is G-measurable and integrable
(i) [ofdP=P(ANG) VGeP
Then f = P(A|G) as.

Proof. Define
u(G):/ fdP, Geg
G
v(G)=P(ANG), Geg

Both p and v are measures on (£, G).

By (i), u(G) =v(G) VG € P.

Hence, by Theorem 10.4, u(G) = v(G) VG € G. The conclusion follows since f satisfies the
two conditions (i) and (ii) from the definition of P(A | G).

The next result shows that P(- | G) satisfies the same properties as the classical probability
measure P. 0

Theorem 9.4 — Theorem 33.2 (Properties of Conditional Probability) Let (2, F, P) be a
probability space and G C F be a sub-o-field.

1) PM@|G)=0as. and P(Q]|G) =1 as.

2) P(A|G)>0as. and P(A|G)<1las. VAeF

3) If {A,, }n>1 are disjoint sets in F, then

PlUJA1G] =) PA.|G) as.
n>1 n>1
4)If A,B € F and A C B, then
P(B\A|G)=P(B|G)—P(A|G) as.

P(A|G)<P(B|G) as.

5) Inclusion-exclusion principle: For any Aq,..., A, € F,
P (U A; | g) = P(A;|G) =) P(AinA4;|G)+...+(-1)"'P (ﬂ A; | g) a.s.
i=1 i=1 i<j i=1

6) If {A, },,>1 are subsets of F such that A, T+ A€ F (i.e., A, C Apyiand A=~ 4n),
then -

P(A,|G)tPA|G) as.
Similarly, if A, | A (i.e., A, 2 Apq1 and A = ﬂnZI Ap), then

P(A,|G) L P(A|G) as.

7) If A € F is such that P(A) =1, then P(A|G) =1 a.s.
If A € F is such that P(A) > 0, then P(A|G) >0 a.s.

Proof. 1) 1 is trivial: f = 0 satisfies conditions (i) and (ii) from the definition of P(0 | G).

f=1 satisfies P(Q] Q)
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2) Use the following result: If f: Q — R is a G-measurable function and
/GfdP >0 VG eGthen f>0as. (Section 15)
In our case, f = P(A | G) satisfies:
/GfdP:P(AﬂG) >0 VG e€G. Hence, f >0 a.s.
Similarly, the function f' =1 — P(A | G) satisfies:
/Gf’dP: /G(l—P(A | G))dP = P(G) —/GP(A |G)dP = P(G) — P(ANG)=P(G\ A) >0
Hence f' > 0 a.s., that is P(A | G) <1 as.

3) Let f = Zn>1 P(A, | G). We check that f satisfies conditions (i) and (ii) from the definition
of P( n>1 n | g_>

(i) f is G-measurable (limit of a seq. of G-measurable functions is G-measurable).
(ii) Let G € G be arbitrary, and denote A ={J,5, A,. We want to prove that:

/fdP:P(AmG) (7)
G
/ fdp = / > P(A, |G)dP >0 (Corollary to Theorem 16.7)
n>1
/ZP n|G)dP = Z/ Ay |G)dP =" P(A,NG) (by condition (ii) in the def. of P(A, | G))
n>1 n>1

:P(U(A mG) ((UA) ):P(AmG)

This proves (7).
4) - 7) Exercise.
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§10.1 Conditional Distributions continued

Theorem 10.1 — Let (2, F, P) be a probability space, X : Q — R is a random variable, and
G C F a sub-o-field. Then there exists a function u(H,w) defined for any H € B(R),w €
such that the following conditions hold:

(a) p(-,w) is a probability measure on R, Vw €
(b) w(H,-) is a version of P(X € H | G), VH € B(R)

We say that u is the conditional distribution of X given G. In particular, if G = o(Y'), we
say that p is the conditional distribution of X given Y.

For each r € Q, let F(r,-) be a version of P(X <r|G), i.e.,
F(r,w)=P(X <r|G)(w) for P-almost all w € Q.

Properties of F:
1) If r,s € Q with r < s, then F(r,w) < F(s,w) with probability 1.

P(X<r|G)(w) <P(X <s|G)(w) since {X <r} C{X <s}.

Let B, s ={w € ; F(r,w) < F(s,w)}.
Then E, , € G and P(E, ;) = 1.
2) For every r € Q fixed,

ILm F<r+i,w> = ILm P(X§r+71l|g) (w)=P(X <r|G)(w) =F(r,w)

by property 6) in Theorem 33.2.
Let E,. = {w € Q;lim, o0 F (T + %,w) = F(r,w)}. Then E,. € G with P(E,) = 1.
3)
_li_>m F(r,w) = E}m P(X <r|G)(w)=P]G)(w)=1 with probability 1
HX <r}lreo T
Let Dy = {w € Q;limy 00 F(r,w) =1}. Then Dy € G and P(D;) = 1.
4)

lim F(r,w)= EI}l P(X <r|G)(w)=P0|G)(w)=0 with probability 1

r——00

{{X <rtlreq 0
Let Dy = {w € Q;lim,,_ o F(r,w) = 0}. Then Dy € G and P(Ds) = 1.
Let S = (ﬂreQ E) N (nme@ E) N Dy N Ds. Then S € G and P(S) = 1.

e For w e S, extend F(r,w) to R by setting

F(z,w) = T>iIan€QF(T, w)

Clearly, if z € Q then F(z,w) = F(z,w).
e Forw¢ S, let F(-,w) := F* where F* is a fixed cumulative distribution function on R.

e For w € S, we check that F(-,w) : R — [0, 1] is a probability distribution function:
(a) right-continuity: lim,, .o F(2,,w) = F(z,w) if 7, T

(b) non-decreasing: if z <y, then F(z,w) < F(y,w)
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(¢) limy—yoo F(z,w) =1
(d) limyy oo F(z,w) =0

Hence, by Theorem 1.2, there exists a unique probability measure fi(-,w) on R such that

i((—o00,x],w) = F(r,w) VreR

e For w ¢ S, let i* be the probability measure corresponding to F™*, i.e.

i ((—o0,x]) = F*(z) = F*(x) VzeR

Define
i(H,w) ifwels

p(H,w) = {ﬂ*(H) ifw¢s

Then p(H,w) is a probability measure on R Vw € €, i.e. condition (a) holds.

We now prove that yu satisfies condition (b):

We will prove that u(H,-) = P(X € H | G) a.s. by checking that u(H,-) satisfies conditions (i)
and (ii) from the definition of P(X € H | G).

(i) We have to prove that u(H,-) is G-measurable, VH € B(R).

Let £ ={H € B(R); u(H,-) is G-measurable} is a A-systemn, i.e.

1) ReL
2) If H € L then H* € L
3) If (H,,)n>1 are disjoint then Un21 H,eLl
P = {(—o0,r];r € Q} is a m-system, i.e.
o if A1, As,..., A, € Pthen AiNAsN...NA, EP

P C L since p((—oo,r],) = F(r,-) = P(X <r | G)(:) if w € S, and hence p((—oo,r],-) =
P(X <r|G) with probability 1.
Because P(X < r | G) is G-measurable, it follows that u((—o0,r],-) is G-measurable.
To summarize, we have:
L = A-system

P = m-system
PCL
Then, by Dynkin’s 7-A theorem (Theorem 3), it follows that:
o(P)=L
Hence,
B(R) =0(P) C L C B(R) i.e. £L=DB(R)

This means that u(H,-) is G-measurable VH € B(R).
(ii) We want to prove that

P{X € HING) = / u(H,w)P(dw) VG € G,VH € B(R)
G

PUX c HING) = / W(H,w)P(dw) VG € G,VH € B(R)
G

Fix G € G. Define
p1(H)=P{X € H}NG)

pa(H) = /G u(H, w) P(d)
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Note that ¢1(H) = p2(H)VH € P, since if H = (—o0,r] with r € Q
p1((—00,7]) = PUX <r}NG)
pal(=0e,r]) = [ l(=o0,1],0)P(d)

G

802((—0077"]):/GM((—OO,T],w)P(dw):/

G
=P(X <r|G)P(dw)=PH{X <r}nG)

Fr,w)P(dw) = /G P(X < 1| G)(w)P(dw)

By the definition of conditional probability.
Since P is a w-system, ¢1(H) = p2(H)VH € B(R).

p1((—o0,1]) = P{X <7} NG)
902((—0077‘])=/u((—oo,r],w)P(dw):/

Fr,w)P(dw) = / P(X <1 | G)(w)P(dw)
G G G

=P(X <r|G)P(dw)=PH{X <r}nG)
By the definition of conditional probability.
Since P is a w-system, @1 (H) = ¢o(H)VH € B(R).
PUX € HING) = / W(H,w)P(dw) VG € G,VH € B(R) [
G
Example 10.2. Let X,Y be r.v.’s on (2, F, P) s.t. the law of (X,Y) has density f(x,y), i.e.
P(XY) e d)= [ faydedy vACR?
A

Let fx(z) = [ f(z,y)dy be the marginal density of X:

P(XEB):/fX(J;)dx VB CR
B

Define
frix(y|z)= J;(;(,j)) if fx(z)#0
Observation:
/RfY\X(y | x)dy =1 (exercise)
Define
g fvixw ) dy if fx(z)#0
H) =
@l ) {Q*(H) if fx(z) =0
Set

p(H,w) = Q(X(w), H)
Claim: p(H,w) is the conditional distribution of ¥ given X.

Proof of this claim: We check properties a) and b) of Theorem 33.3
a) pu(-,w) = Q(X(w),-) is indeed a probability measure Vw €
b) We have to check that p(H,-) is a version of P(Y € H | X), i.e.

pwH,)=P(Y eH|X) as.
For this, we have to check that conditions (i) and (ii) are verified:

(i) u(H,) =Q(X(-), H) is o(X)-measurable. This is clear since @ is a function of X.

34



35

(ii) We have to prove that
P{Y e H}NG) = /Gu(H,w)P(dw) VGeo(X)=G (2)

Let us prove (2). Let G = {X € E} € 0(X) be arbitrary, with E € B(R). Then

Let G ={X € E} € 0(X) be arbitrary, with £ € R.
[t P = [ Q). m) P
G {XeE}

— [ LX) QUX(w),H) Plde)
{XeE}

= [ 16(X() QUX (). H) P(d)

= / Q(z, H) (P o X )(dr) (change of variables theorem 16.13)
B

- / Q(a, H) fx () da
E

/ Q(z, H) fx (x) da
En{fx (z)#0}
-/ (/ Frix ym)dy) Jx (@) da
BO{fx ()0}
, d d
Lotseirse J fe s

//fxydydm

P((X,Y) € E x H)
= P({X € E}n{Y € H}) (by definition of E and H)
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§11.1 Conditional Expectation

* Recall: We say that a r.v. P(A|G) is the conditional probability of A given G if:
1. P(A|G) is G-measurable and integrable
2. [ P(A|G)dP =P(ANG) VGeg

Note that P(ANG) = [ 14 dP, (ii) can be stated as:

/P(A\g)dP:/ 14dP VG eG
G G

Theorem 11.1 — Let (2, F, P) be a probability space, G C F a sub-o-field, and X : Q@ — R
an integrable r.v. Then, there exists a r.v. g : 2 — R such that:

1. g is G-measurable and integrable

2. [,gdP = [,XdP VGeg

If ¢ : Q@ — R is another r.v. satisfying (i) and (ii), then g = ¢’ a.s., i.e.
Plwegw)=4dw)}) =1

We say that g is a (version of) the conditional expectation of X given G, and we denote

9 =E(X|9)

Proof. Proof: Existence Case 1, X >0
Define

D(G):/XdP for all G € G.
G

Clearly, D is a measure on (9, G).
Note that D is a finite measure:

D(Q) = /QXdP =E(X) < 0.

Moreover, D is absolutely continuous with respect to P:
if P(G) =0 then D(G) = 0.

By the Radon-Nikodym Theorem (Theorem 32.3), there exists a G-measurable function g :
2 — R such that:

D(G):/gdP VG eg.
G

From (1) and (2),

/XdP:/gdP VG € G.
G G

Thus, g is clearly integrable. So, g satisfies (i) and (ii). O

Proof. Case 2: X is arbitrary
Recall that any a € R can be written as:

_ a ifa>0 _ 0 ifa>0
—a~ where ot = , a =
0 ifa<O —a ifa<0
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Hence, for X (w) € R, we have:
X(w)=X"(w) - X (w) YweQ.
Both X* and X~ are non-negative r.v.’s. By Case 1,

e there exists a function g7 : 2 — R G-measurable and integrable s.t.
/gldP:/X+dP VG eg (3)
G G
e there exists a function g5 : 2 — R G-measurable and integrable s.t.
/ggdP:/X_dP VG eg (4)
G G
Take the difference between (3) and (4), we get:
/(gl—gg)dP:/(X+—X_)dP:/ XdP VGeg.
G G G

Taking g = g1 — g2, we see that g satisfies (i) and (ii). O

| Lemma 11.2 — Lemma 1 If X is G-measurable, then E(X|G) = X a.s. (and integrable)

Proof. 1t is clear that g = X satisfies (ii) and (iii) of Theorem 1. O O

Lemma 11.3 — Lemma 2 If X is independent of G (i.e. {X € B} and G are independent
for any B € R,G € G), then E(X|G) = E(X) a.s.

Proof. We check that g = E(X) satisfies (i) and (ii) from Theorem 1:

(i) g = E(X) is a constant r.v., so it is measurable w.r.t. any o-field, and in particular it is
G-measurable. Clearly, g is integrable.

(i)
/ gdP = / E(X)dP = E(X)/ dP =E(X) P(G) VG €.
G G G

/ XdP = / 16X dP =E(1¢X) =E(lg) -E(X) = P(G) -E(X) for any G €G.
G Q
(independent since X is indep. of G)
]

Example 11.4. Let X be an integrable r.v. on (Q,F,P) and G = 0({B;};>1) where {B;};>1 is
a partition of Q, with P(B;) > 0. Recall that an arbitrary set in G is of the form G = {J,.; Bi
for some I C {1,2,...}. Find E(X|G).

Solution It can be proved that since E(X|G) is G-measurable and G = o({B;}i>1), then

E(X|G) = Y ails,

i>1

for some «; € R.
Let us find the constants «; € R. We write property (ii) for G = B;:

/aidP:/ X dP,
B; B;

k3
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ie. oy fBi dP = fBi X dP, or equivalently «; P(B;) = fBi X dP. So a; = P(}Bi) fBi XdP.

Hence, e
E(X|G) = (P(;i) /B XdP) 1p,.

i>1

Remark: If there exist some ¢ > 1 such that P(B;) = 0, for those values ¢ we can choose
d; € R arbitrarily. In that case,

E(X|G) = > (P(;i)/BiXdP>1Bi+ > dilp,

{iz1;P(B:)>0} {i21;P(Bi)=0}

Example 11.5. For any event A € F and for any o-field G C F,
E(14|G) = P(A|G) a.s.
Proof: We show that g = P(A|G) satisfies (i) and (ii) in Theorem 1:

(i) g is G-measurable (clear).

(i) [gdP = [ P(A|G)dP = P(ANG) = [1,dP VG €G.

Theorem 11.6 — Let (£2, F, P) be a probability space, X :  — R an integrable random
variable. Suppose that G = o(P) where

P is a m-system, i.e., if A, B € P then ANB € P

and
Q= U P; for some P; € P.

i>1

Let g : Q@ — R be a function which satisfies:

(i) g is G-measurable and integrable
(il [,9dP=[,XdP VG e€P

Then g = E(X|G) a.s.

Proof.
/ gdP:/ X dP = / E(X|G)dP VG € P.
G el el
By Theorem 16.10(iii), g = E(X|G) a.s. O O

Theorem 11.7 — Properties of Conditional Expectation Let (2, F, P) be a probability
space, G C F a sub-o-field; let X : © — R and Y : © — R be integrable random variables.
If X =a a.s. where a € R, then E(X|G) = a a.s.

(i) (Linearity) E(aX + bY|G) = aE(X|G) + bE(Y|G) a.s. Va,beR
(iii) (Monotonicity) If X <Y a.s., then E(X|G) < E(Y|G) a.s.
(iv) [E(X]G)| <E(X]|9)

Proof. (i) Clearly g = a satisfies (i) and (ii) from Theorem 1.

(ii) We let g = aE(X|G) + bE(Y|G). We show that g satisfies properties (i) and (ii) from the
definition of E(aX + bY|G) (Theorem 1):
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(a) g is G-measurable. This is clear since g is a linear combination of G-measurable
functions. Similarly, g is integrable.

(b) Ji,gdP = [,(aE(X|G)+VE(Y|G))dP = a [, E(X|G) dP+b [,E(Y|G)dP = a [, X dP+
b, Y dP = [ (aX +bY)dP

VG e g.

(iii) (E(Y|G) - E(X|G))dP = [ E(Y|G)dP — [,E(X|G)dP = [,Y dP — [, XdP = [,(Y —
X)dP >0

for all G € G. Hence E(Y|G) — E(X]|G) > 0 a.s.
(iv)
-E(|X[|9) < E(X|9) <E(|X[|9)
This is true because
x| < X <X

and then we apply monotonicity:

E(-|X[19) < E(X|9) < E(|X]|9).
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§12.1 Conditonal Expectation Continued

Theorem 12.1 — Suppose that X, Y, X,, are integrable.
(i) If X = a with probability 1, then E[X | G] = a.
(ii) For constants ¢ and b, E[aX +bY | G] = aE[X | G] + bE[Y | G].

|E[X | 6] < E[IX] ]G]

)
)
(iii) If X <Y with probability 1, then E[X | G] < E[Y | G].
(iv)
)

(v) If lim,, X,, = X with probability 1, | X,,| <Y, and Y is integrable, then lim, E[X, |
| = E[X | G] with probability 1.

Proof. If X = a with probability 1, the function identically equal to a satisfies conditions (i) and
(ii) in the definition of E[X | G], and so (i) above follows by uniqueness.

As for (ii), aF[X | G] + bE[Y | G] is integrable and measurable G, and

E[X | g]dP+b/

E[Y | g]dP:a/ XdP+b/ YdP:/(aX+bY)dP
G e G G

/ (aE[X | G] + bE[Y | G]) dP = a/
G

G

for all G in G, so that this function satisfies the functional equation.
If X <Y with probability 1, then

| EYi9-Ex|g)ap= [ (- x)aP=0
G G
for all G in G. Since E[Y | G] — E[X | G] is measurable G, it must be nonnegative with probability
1 (consider the set G where it is negative). This proves (iii), which clearly implies (iv) as well as
the fact that E[X | G] = E[Y | G] if X =Y with probability 1.

To prove (v), consider Z,, = sup>,, |[Xx — X|. Now Z,, | 0 with probability 1, and by (ii), (iii),
and (iv),

|E[Xn | 9] - EIX | G]| < E[Z, | G].

It suffices, therefore, to show that E[Z,, | G] | 0 with probability 1. By (iii) the sequence E[Z,, | G]
is nonincreasing and hence has a limit Z; the problem is to prove that Z = 0 with probability 1,
or, Z being nonnegative, that E[Z] = 0. But 0 < Z,, < 2Y, and so (34.1) and the dominated
convergence theorem give

E[Z] = /E[Z | GldP < /E[Zn | G)dP = E[Z,] — 0.

Theorem 12.2 (Theorem 34.2 (v) Dominated Convergence Theorem for Conditional Expectation)
— Let (Q, F, P) be a probability space and G C F a sub-o-field. Let (X,,), X, Y be integrable
random variables. If X;, — X a.s. and | X,| <Y a.s.Vn, then

E(X,|G) = E(X|G) a.s.

Proof. We proved it above. O
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Theorem 12.3 — If X is integrable and the o-fields G; and Gs satisfy G; C Go, then

E[E[X | Go] | Gi] = E[X | Gi]

with probability 1.

Proof. Tt will be shown first that the right side of (34.4) is a version of the left side if X = I,
and Gy € G. Since Ig,E[Y | G] is certainly measurable G, it suffices to show that it satisfies the
functional equation

/IGOE[Y|g]dP:/ Ig,YdP, GE€QG.
G G

But this reduces to

/ E[Y\Q]dP:/ YdP,
GNGo GNGo

which holds by the definition of E[Y | G]. Thus (34.4) holds if X is the indicator of an element of
g.

It follows by Theorem 34.2(ii) that (34.4) holds if X is a simple function measurable G. For
the general X that is measurable G, there exist simple functions X,,, measurable G, such that
|X,| < |X| and lim,, X,, = X (Theorem 13.5). Since |X,,Y| < |XY]| and |XY| is integrable,
Theorem 34.2(v) implies that

lim E[X,Y | G] = E[XY | g]

with probability 1. But E[X,Y | G] = X, E[Y | G] by the case already treated, and of course
lim, X,E[Y | G| = XE[Y | G]. (Note that X,E[Y | §] = E[X,,Y | §] < E[|XY|| G], so that the
limit X E[Y | G] is integrable.) Thus (34.4) holds in general. Notice that X has not been assumed
integrable.

O

Theorem 12.4 (Tower Property) — If X is measurable G, and if Y and XY are integrable,
then
E[XY | g] = XE[Y | d]

with probability 1.

Proof. Let X’ = E(E(X | G2) | G1). We check that X’ satisfies properties (i) and (ii) in the
definition of E(X | Gy).

(i) X' is Gi-measurable and integrable. This is clear.

(ii) We have to prove that:
/X/dP:/XdP VG € Gy
G G

Let G € G; be arbitrary. Then

/ X' dP :/ E(E(X | Gs)| G)dP :/ E(Y | G1)dP :/ Y dP
G G G G
where Y = E(X | G2). By property (ii) in the definition of E(Y | G1), since G € Gy,

/ E(X |Gy)dP = / X dP (using property (ii) in the def. of E(X | G2))
G G

:>/XdP.
G
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Therefore,

/X’dP:/XdP VG € Gy.
G G

If G; C Gs then trivially E(E(X | G2) | G1) = E(X | G1).

Y =FE(X|Gs)

Y is Gi-measurable, hence Go-measurable.
Lemma 12.5 — If X is G-measurable then E(X | G) = X a.s.

Recall Jensen’s inequality: If ¢ : R — R is a convex function, then
P(E(X)) < E(p(X))

for any r.v. X for which X, p(X) are integrable.

Example: o(X) = |X|P,p>1

Then (5) says:
[E(X)[P < E(X[") vp=>1

In particular, |E(X)]? < BE(X?).
Recall the following basic properties of convex functions:

1. Definition: ¢ is convex if

p(te + (1 —t)y) <to(z) + (1= )e(y) Vie(0,1)

Remark: If G; C Gy then trivially E(E(X | G2) | G1) = E(X | G1).

Y =FE(X|Gs)

Y is Gi-measurable, hence Go-measurable.
Lemma (Feb 28): If X is G-measurable then E(X | §) = X a.s.
Recall: Jensen’s inequality: If ¢ : R — R is a convex function, then

P(E(X)) < E(p(X))

for any r.v. X for which X, o(X) are integrable.

Example: o(X)=|X|P,p>1

Then (5) says:
[E(X)[" < E(IX]?) vp=>1

In particular, |E(X)]? < B(X?).
Recall the following basic properties of convex functions:

1. Definition: ¢ is convex if

p(te + (1 —t)y) <to(z) + (1= )e(y) Vie(0,1)

2. If ¢ is convex, then ¢ is continuous.

3. If ¢ is convex,

/ , )
Ple) = lim, e

¢'(zg) = h%l P20 =€) = ¢lzo) exists and is finite
e—0~ €

42

exists and is finite



43

4. If ¢ is convex and ¢'(xy ) < A(zo) < ¢'(x¢), then
o(x) > p(xg) + A(zo)(x — 20) Vo €R (6)

(6) says that the graph of ¢ stays above any support line through (xg, p(z¢)). This happens
for any zo € R.

Lemma 3 (Jensen’s Inequality):

P(E(X)) < E(p(X)) (2)

for any convex function ¢ and any random variable X such that the expectations exist.
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§13.1 Proof of Conditional Jensen Inequality
Recall: Jensen Inequality says for any convex function ¢,
P(E(X)) < E(p(X))

Goal: Extend this inequality to E(- | G)

Lemma 13.1 (Jensen Inequality for Conditional Expectations) — For any convex function
¢ : R — R and for any random variable X such that X and ¢(X) are integrable,

P(E(X | G)) <E(p(X)[G) as.

Proof. Recall from last time that Vag € R, Vz € R, ¢'(z5) < A(wo) < ¢'(zd),
o(x) = p(x0) + A(xo)(x — o) (2)

2o = E(X | G)(w)

. We obtain:
z=X(w)

Fix w € . We apply (2) to {

P(X(w)) = p(E(X | G)(w)) + AEX | §)(w))(X(w) — E(X | G)(w))
We drop w from the writing. We write:

P(X) = p(E(X [ §)) + AE(X | 9))(X —E(X | §)) (2)

Case 1

Assume that E(X | G) is bounded, i.e. |E(X | G)| < M for some M > 0.

Note that if ¢ is convex, then ¢ and A are bounded on bounded sets. Hence ¢(E(X | G)) and
A(E(X | G)) are bounded (hence integrable).

Take E(- | G) in (2). We use monotonicity of cond. expect. (Th.34.2.(iii)). We get:

E(p(X) [ 9) = Elp(E(X | §)) | 6] + E[AE(X [ 9))(X —E(X | G)) | J]

Case 2: General Case

Let G, = {w € Q; |E(X | G)(w)| < n}. Note that G,, € G and
E(lg, X | G) =1g,E(X | G)

E(X|G) onG,

E(X16) = {O on G¢

Hence E(Ig, X | G) is bounded. By applying Case 1 (to I, X instead of X), we obtain:

¢ (Ele, X [9) <E(ple,X)[g) as ¥n=1 (3)

We evaluate separately the two sides of (3):
LHS (left hand side) is equal to:

LHS of (3) = ¢ (E(lg, X [ §)) = ¢ (I, E(X | §)) (4)

because I, is G-measurable.
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RHS: Note that
X(w) ifweG,

(e, X)) = Ig, (W)X (w) = {0 if we G

(X (w) fweqG,
»(0) if we G

This means that p(Ig, X) = o(X)lg, + ¢(0)Ige . Hence,

(g, X)(w) = {

RHS of (3) = E[p(X)la, +¢(0)lgg | G] = E[p(X)lg, | GI+E[p(0)lg; | 9] = Lo, E[p(X) | Q]HEG?E[@(O) | 6] = Ig, Elp(X
5
We will use (4) and (5) in inequality (3). We obtain:
¢(le,E(X [ 9)) <Ig,Elp(X) | G+ ¢(0)lg; Vn=>1 as.

We take the limit as n — co. We use the fact that {G,, C G,,+1Vn}, UZ‘;l G, = Q.
Hence, Ig, — Io =1 and Ige — 0.
Since ¢ is convex, ¢ is continuous. Hence (I, E(X | G)) = ¢(E(X | G)) as n — .
Therefore,

P(E(X|G9) <E(p(X)|G) as.

Recall (Th.33.3) X =r.v., G C F sub o-field. The conditional distribution of X given G is
w(H,w) for H € R,w € 2 such that:

(i) (-, w) is a probability measure on R for w € .

(i) wH,)=P(X€H|G) as. VHER

§13.2 Conditional Distribution and Conditional Expectation

Theorem 13.2 (Th.34.5: Conditional Distribution and Conditional Expectation) — Let
(2, F, P) be a probability space, G C F is a sub o-field, X is an integrable r.v. Let u(H,w)
be the cond. distrib. of X given G.

Let ¢ : R — R be a measurable function s.t. ¢(X) is integrable. Then

Elo(X) | G)(w) = /Rgp(f)u(df,w) for almost all w € .

In particular, if p(§) = &, then

E[X | Gl(w /f,u d¢,w) for almost all w € Q.

Proof. Case 1 ¢ =¥y
For some Borel set H € R.

RHS of (6 /J%H p(de x w) = p(H,w) =P(X € H|G) =E [¥ixem|G]
P )1 fwe{XeH} |1 ifX(w)eH
xemp(@) =14 ifwe¢ {XeH |0 if X(w)¢H

1 if X(w)e H

Fu(X)(w) =Fg(X W)= {0 if X(w) ¢ H

So Wixemy =¥n(X) and E ¥ xcpy|G] = EW¥u(X)|G] = E[p(X)|]
Case 2 ¢ is a simple function i.e., p = Zle o, with o; € R, H; € R.
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Follows by Case 1, using linearity. Case 3 ¢ > 0. By Theorem 13.5, there exists a sequence
{¢n} of simple functions s.t. ¢, (z) T p(x) as n — oo, for any z € R. By Case 2,

E[on(X)|G](w) = /Rgon(ac),u(dx X w) Vn for a.a. w

Let n — oo in (7). We have:

Elpn(X)|G] == Elp(X)|9] by D.C.T.
To justify the application of this theorem, note that
on(X) < p(X)¥n and ¢(X) is integrable (by hypothesis)
Jz en(X)p(de x w) = [ e(X)p(de x w) by MCT.
We obtain:

Elp(X)|G] = /RSO(X)M(dQT X w) for a.a. w

Case 4 ¢ is arbitrary. We write ¢ = o — ¢~ where

) = p(z) if p(z) >0
0 if p(x) <0

_ 0 if p(x) >0
o (x) = et
—p(x) if p(z) <0
The conclusion follows by applying Case 3 to o™, ¢~ and use linearity. O

Using Theorem 3.15, we can give another proof of Jensen’s Inequality for Conditional
Expectation: for any convex function ¢,

o(E(X|G)) < E[p(X)|G] as.

To see this, let p(dx,w) be the cond. distr. of X given G. Then

B(X|0)(w) = [ an(dz xw) by (67

R

P(E(X|G)(w)) =¢ (/R zp(de x w)) for a.a. w € R

On the other hand, by (6)

E[o(X)|G)(w) = /Rgo(X),u(dm X w) fora.a weR

So it suffices to prove that:

%) (/R zu(dr x w)) < /Rgo(a:)u(d:r X w) fora.a w

This is in fact the (Classical) Jensen’s Inequality which says that
e(E(X")) < E[p(X")] forr.v. X’

So here we choose X’ to be a r.v. with law p(dz,w) for fixed w. Then

{IE[X’] = [pzp(de,w)
Elp(X")] = [g p(x)pu(dz, w)
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Recall from last time:

Theorem 14.1 (Theorem 34.5) —

E[p(X)[G] = / () u(dzw)

for almost all w. For all ¢ : R — R measurable s.t. ¢(X) is integrable.

Here p(H,w) is the cond. distr. of X given G:

(i)  p(-,w) is a probab. measure Yw € Q
(i) w(H,-)=P(X € H|G) as.

We will use the following result (see the proof of Th 25.6):

Lemma 14.2 — Let p be an arb. probab. measure on (R, R). Then there exists a probab.
space (0, F,P)and ar.v. X : Q — R s.t. pis the law of X, i.e.

P(X e B)=u(B) VBEeR,
or equivalently

P(X <z)=F(z) Vze€R where F(z) = u((—o0,x]).

Proof. Let (2, F, P) = ((0,1),B(0,1),\) where X is the Lebesgue measure.
Define the generalized inverse of F' by:

F~'(u) =inf{z € R; F(x) >u} Yue (0,1)
It can be proved that: (exercise)
u< F(r) <= F'(u) <z VrecRVuc(01)
Take X (w) := F~'(w) Vw € (0,1). Then (1) holds:
P(X <a)=P({we (0,1);X(w) < z}) = P({w € (0,1); F7'(w) < z})

= M(0, F(@)]) = F(2)

§14.1 Markov Inequality for Cond. Expectation

Lemma 14.3 (Markov Inequality for Cond. Expectation) — For any integr. r.v. X and any
sub-o-field G C F, we have:

P(IX| > al0) < —E(XPIG) as.

Proof. Let p(x) = 1{x|>a},7 € R. Clearly ¢ : R — R is measurable. Let u(H,w) be the
conditional distr. of X given G.

For every w € () fixed, let Z,, be ar.v. defined on probab. space (', 7', P') = ((0,1),8(0,1), \)
such that the law of Z,, (under P’) is p(-;w), i.e.

P'oZ;'=p(-,w) (see Lemma 1)
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Then
P(IX] > alG)(w) = E [l{x>a}|9] (v) = E[¢(X); G](w)

Applying Theorem 34.5,
[ etdn) = | oz.)dP = P(Z.] > o)
By the classical Markov inequality,
PA1Z] 2 0) € EZI7) = o [ el n(daio)

Thus, .
P(|X] 2 a|@)(w) < —E(IX|P1G)(w)

O

8§14.2 Inequalites for Cond. Expectation
4 i _ )

Corollary 14.4 (Chebyshev's Inequality for Cond. Expectation)

For any integrable r.v. X and for any sub-o-field G,

P(IX —E(X|G)| > o|9) < %Var(X|g) Va > 0, if X? is integrable
o
where
Var(X|9) = E((X - E(X9))%|¢) = E(X?|9) - (E(X|))

\- J

Proof. Let Y = X —E(X|G). Then Y is integrable since it is a linear combination of integrable
r.v.’s. We apply Lemma 2 to Y with p = 2. We obtain:

P(Y|> alg) < —5E(V?I6) = 5 Var(X|0)

P(|X - E(X|9)| = alG)

Note that Theorem 34.5 has a multivariate extension:

Ble(X.Y)0w) = [ playnldn,dyw) for

where p(H,w) is the cond. distribution of (X,Y’) given G, i.e.

(i) p(-,w) is a prob. measure on R?Vw € Q
(i) p(H,-) = P((X,Y) € H|G) as. VH € R?

Lemma 14.5 (Holder Inequality for Cond. Expectations) — Let X,Y be two r.v.’s s.t. XY
is integrable (E(| X ?|G) is integrable and E(]Y|?|G) is integrable).

For some p,q > 1 s.t.

1 1
,_|_,:1
p q

let G be an arb. sub-o-field of . Then

E[|IXY|G) < (E(X[PIG))? (E(Y]%|G))s
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Proof. Let u(H,w) be the cond. distr. of (X,Y) given G. Let ¢ : R> — R be given by

o(x,y) = |2yl

Clearly ¢ is measurable. For any w € ( fixed, let Z,, = (Z}, Z2) be a random vector defined on
a probab. space (¥, F’, P’) s.t. the law of Z, under P’ is u(-,w), i.e.

P/OZL;1 :u('vw)

Then
E[|XY[G](w) = E[¢(X,Y)|G](w) = E[p(Z,, Z2)]

By change of variable,

[ etehoiap = [ 12 duenio)
R2 R
By Holder’s inequality,

E[IXY|IG] < (E(IX|7|G))* (E(Y|"|G))

Finally, we define the Markov process:

Definition 14.6 Let (Q, F, P) be a prob. space and X; : @ - R ar.v.
For all ¢ > 0, the collection (X;);>¢ is a Markov process if

P(X, € H|X,,s<t)=P(X, € HX,) Vt<u

Here the cond. probab. is w.r.t. o{Xs;s <t} on the RHS and o{X;} on the LHS.
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§15.1 Markov Decision Process

Recall the following definition from last time:
A process (X;)¢>o (i-e. a collection of r.v.’s defined on (2, F, P)) is called a Markov process if

P(X, € HX;,s€[0,t])=P(X, € HX:) YO<t<u (3)

Denote G; = 0({X5;s € [0,¢]}) “the history” (or the past) of the process up to time ¢
Go = o({X:}) “the present”
Gs = 0({X,}) where u >t “the future”
Relation (1) says that for every A € G5

P(A|o(G1 U Ga)) = P(A|G2) (4)
which is denoted by Gy V Gy (notation).

Lemma 15.1 (Problem 3.11) — Let G, G2, G3 be sub-o-fields of F. The following conditions
are equivalent:

(1) P(A|g1 V gg) = P(A|g2) for all A € gg.

(i) P(ANBI|Gy) = P(A|G2)-P(B|Gs) forall A € G, B € G3, i.e., A and B are “conditionally
independent” given Gs.

(ifi) P(A|G2 V G3) = P(A|Ga) for all A € Gy.

Proof. Tt is enough to prove (i) = (ii). The argument for (ii) = (i) is the same. We have

P(AN A3|92) 14n4,|G]
[1414,|G1V Go]|G2] (Tower Property)
14E [14,]G1 V G2] |Go]
14P(A3|G1 V G2)|Go]
(14, is Gi-measurable, hence Gy V Ga-measurable)
= E[14P(A3|G2)[G2]  (from (i)
= E[14]G2] P(A5]G2)
= P(A[G2)P(As5]|G2).

[
[E
[
[

This shows that (i) implies (ii). (ii)) = (i) We show that P(A|Gs) satisfies the two conditions
from the def of P(A3|G1 V Ga):

1) P(A|Gs) is Go-measurable, hence Gy V Ga-measurable

2) We have to show that

/ P(A|G2)dP = P(ANG) VG € GV G
G

By Theorem 33.1, it is enough to prove that (i) holds VG € F where {F = AN A" : A €
Gi, A’ € Gy} is a w-system (exer) and o(F') = G; V Gy (exer). § is a countable union of sets in F'

(Q € Gi,G).
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Let G=ANA" with A€ Gy, A" € Go. Then on the left-hand side of (1) we have: LHS of (1):

LHS of (1) = / P(As|Gy) dP
A1NAs

= E[14,na,P(45|G2)]
- F {E {1A1P(A‘°’|g2)‘92”

14,

by Go-measurability (product of Go-meas. 1v’s)
= E[14,P(A3]G2) - E[14,]G]]
= E[14,P(A3]G2)] - P(A1|G2)

using (ii)
= E[14,n4,n4,]G2]
= P(A; N AN A3).

RHS of (1):

RHS of (1) = P(A; N (A; N A3))
= FE[14,n4504,]
—E {E [1AIQA31A2 QQH

= F[1a,] E[1a,n4,|G2]
= P(Ay) - P(A1 N A3|Go).

§15.2 Discrete Time Martingales

Definition 15.2 Let X, X5,... be a sequence of random variables on a probability space
(Q,F,P), and let Fy, Fa,... be a sequence of o-fields in F. The sequence {(X,,,F,) :n =
1,2,...} is a martingale if the following four conditions hold:

L PP € PPy
2. X,, is measurable with respect to F,,

3. E[|X,]] < oo for all n,

4. with probability 1, E[X,1|F,] = X,.

We simply say that {X,, },>1 is a martingale if (X,,) is a martingale with respect to the natural
filtration
‘Fr)f = U(XlaX27"',Xn)

which is the “smallest” o-filtration which satisfies (i) and (ii).
Remark: If (ii) holds, then (iv) is equivalent to:

/Xnde/X,H_ldP:O VA e F,
A A

(by the def. of E[X,|F,]).
Motivation: Bets placed at horse races

e X, = fortune of the gambler after the n-th race
e F,, = information accumulated by the gambler up to the n-th race.

o E[X,+1|F,] = expected fortune after the (n + 1)-th race.
The game is fair if EF[X,1|Fn] = X,.
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§16.1 Section 35 Martingales Continued

Definition 16.1 Let (X,,),>1 be a sequence of random variables on a probability space
(Q, F, P). The sequence is a martingale with respect to the filtration (F,),>1 if:

(i) Fpn C Fpyq for allm > 1.

(ii) X, is Fnp-measurable for all n > 1.
i)
)

(ili) E[|X,]] < oo for all n > 1.

(iv) E[Xp+1]Fn] = X, almost surely for all n > 1.

Basic Example: Let (S,),>1 be independent random variables with E[A,] = 0 where
X, = %An and F,, = 0(Aq,...,Ay). Then (X,,),>1 is a martingale with respect to (Fy,)n>1-

Example 16.2 (Martingale Representation with Respect to Filtration). Let (92, F, P) be a
probability space, let v be a finite measure on F, and let F7, Fa, ... be a nondecreasing sequence
of o-fields in F. Suppose that P dominates v when both are restricted to JF,,—that is, suppose that
A € F, and P(A) = 0 together imply that v(A) = 0. There is then a density or Radon-Nikodym
derivative X,, of v with respect to P when both are restricted to F,,. X, is a function that is
measurable F,, and integrable with respect to P, and it satisfies

/XndP:u(A), Ac F,. (5)
A

If Ae F, then A € F,,+1 as well, so that

/ X1 dP = v(A); (6)
A

this and (35.9) give (35.3). Thus the X,, are a martingale with respect to the F,.

Definition 16.3 We say that a sequence (X,,),>1 is a submartingale with respect to the
filtration (F,,)n>1 if it satisfies conditions (i)—(iii) in Definition 1, and the following property:

E[X,11|Fn] > X, a.s. forall n > 1.

Condition (iv) is equivalent to:

/XndPg/XanP VA€ F,.
A A

Example 16.4 (Basic Example). Let (A,,),>1 be i.i.d. random variables with E[A,] > 0 for
alln > 1. Let X, = >, % and F,, = 0(Aq,...,A,), then (X,,),>1 is a submartingale with
respect to (Fp)n>1-
To see this, we note that for all n > 1,
A,

E[Xni1|Fn] = E[X, + T“m]

Ay,
= X + B[~ | Fl

E[AnJrl}
2

=X, + > X, as.,

since A, 41 is independent of F,, and hence E[A,,11|F,] = E[A,41].
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If (X,)n>1 is a submartingale with respect to (F,)n>1, then (X,,)n>1 is also a submartin-
gale with respect to (G,)n>1 where G, = o(Xy,...,X,) is the minimal o-field generated by

(Xla s aXn)
Properties of Submartingales (exercise):
1. E[X,11|Fn] > X,, almost surely for all n > 1.
2. E[X;] <E[X3] <E[X3] <...

3. If X, — X,_1 = A, for all n > 1, then A, is integrable and E[A,|F,,_1] > 0 almost surely
for all n > 1.

Theorem 16.5 — (i) If (X,,),>1 is a martingale with respect to (F,)p,>1 and ¢ : R - R
is a convex function such that ¢(X,,) is integrable for all n > 1, then (¢(X,,))n>1 is a
submartingale with respect to (F,).

(i) If (X,)n>1 is a submartingale with respect to (F,,) and ¢ : R — R is a convex non-
decreasing function such that ¢(X,,) is integrable for all n > 1, then (¢(X,))n>1 is a
submartingale with respect to (F,).

Proof. Properties (i)-(ii) from the definition of submartingale are clearly satisfied. To prove (iv’)
we have the following;:

(1) E[p(Xn+1)|Fn] = ¢(E[Xpn11|Fn]) = ¢(X,,) by Jensen’s Inequality for Conditional Expecta-

tion.
(il) Elp(Xnt1)|Fn] = ¢(E[Xpni1|Fn]) > ¢(X,) as ¢ is convex and ¢ is non-decreasing.
O

Observation: If (X,,),>1 is a martingale then (X2),>1 and (] X,,|)n>1 are sub-martingales.

Definition 16.6 Let (F,,),>1 be a filtration on a probability space (2, F,P) and let 7: Q —
{1,2,...} be a random variable such that {7 < n} € F, for all n > 1. We say that 7 is a
stopping time with respect to (F,,)n>1 and define

Fr={AeF:An{r <n}eF,foraln>1}

If (X,,)n>1 is a sequence of random variables on (€2, F,P), we define a new random variable
X, :Q—Rby

Xr(w) := X;()(w) forallwe Q.

Lemma 16.7 — Let F = (F,)n>1 be a filtration on a probability space (2, F,P). Consider
the following statements:

(a) 7 is a stopping time with respect to (F,) if {r =n} € F, for all n > 1.
(b) Fr is a o-field if 7 is a stopping time with respect to (F,).
(¢) 7 is Fr-measurable and X, is F,-measurable if X,, is F,,-measurable.
(d)

)

d) If 7(w) = k for some fixed k € N, then F, = Fy.

(e) If 1 < 75 are stopping times with respect to (F,), then 7., C F,,.

Proof. a) We have that {r =n} =, . {r <m} C F, CF, forallm > n, hence {r = n} € F,.

Conversely, {7 < n} =,_,{r =k} € F C F, for all k < n, therefore {r <n} € F,.
b) F. satisfies the following axioms:
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1L.0eF:0n{r<n}=0¢€F, foralln>1.

2. If Ae F, then A° € F: A°N{r <n}={r<n}\AecF, because {r < n} and A are in
Fn-

3. If {Ax} C F; then J, Ar € Fr: (U, 4Ax) N {7 < n} = U, (Ax N {7 < n}) € F,, by the

closure of F,, under countable unions.

We continue with parts ¢) and e) next time. O

o4



55

§17 March 20, 2024

Recall: Let (F,),>1 be a filtration on a probability space (2, F,P). A random variable
T7:0Q —{1,2,...} is called a stopping time with respect to (Fy)n>1 if

{r=n}eF, foralln>1.

In this case, we define Fr = {A e F: An{r=n} e F, foralln>1}.
We proved the following properties:

1. 7 is a stopping time if {T =n} € F, for all n > 1.
2. F, is a o-field.

3. 7 is F,-measurable.

4. If 7 =k (constant) then F, = F.

Exercise: Show that 7. = {A e F: An{r <n} e F, forall n > 1}.
Property: If 7y < 75 are stopping times with respect to (F,)n>1, then F,, C F.,.

Proof. Let A € F,,. We want to prove that A € F,, i.e., AN {2 =n} € F, for all n.
An{rm =n}=ANn{rn =n})N{r =n} € F, since {1, =n} € F,.
O

Property: If (X, ),>1 are r.v.’s such that X, is F,,-measurable for all n > 1, then 1;x ¢py is
Fr-measurable.

Proof. Let B € R be an arbitrary Borel set. We have to prove that 1{_)1(7—63} (1) ={X, € B} € F;.
Using property 5, this is equivalent to showing that {X, € B} N{r =n} € F, for all n > 1.
Note that:

{(X;eBin{r=n}={weQ: X (,(w) € B,7(w) =n}
={weQ:X,(w) e B}yn{r=n}eF,, foranyn>1.

Theorem 17.1 (Optional Sampling Theorem) — Let (X;);=1..., be a submartingale with
respect to the filtration (F;);=1.. . Let 7 and 7» be stopping times with respect to
(»Fi)izl ’’’’’ n With T1,7T2: Q—){l,Q,,TL} Then

E[X,,|Fr] > X; as. (7

that is, (X, Xr,) is a submartingale with respect to (Fr,, Fr,)-

Proof. Let X;, = EZ:l Xkl{n:k} then |X.,—1‘ < ZZ:l‘Xk|1{Ti:k} < EZ:lle| So E[IXﬂ” <
Sor_i E[| Xk|] < oo, ie., X, is integrable. (for i = 1,2)
To show (2), we must prove that:

/ XTQdP’ > / X, dP VAEF. (3) (8)
A A

Let Ap = Xj, — Xy for k = 2,...,n, and A; = X;. Then X,, — X;, = > 2 Ay =

D hmry 1 AkL{r <k}
(USGZ Z;Cn:-rl+1(th_Xk—1) = (Xm—l_X7—1>+(Xm—2_Xm—1)+~ . ~+(Xm_Xm—1) = Xm_X'rl
for any m,m € {1,...,n},n <m)
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In our case, L = 71 (w), M = 73(w). Hence, for A € F,,,

/(XTz—XTl)dP:/ 3 Ade:/ S Aulircxen dP.
A A

A k=711+1 k=11+1

Note that

]—B ::Am{’rl<k§7'2}:14m{7—1<k}ﬂ{k§7_2}€]:7'27

T2

where B;, € F,, by the definition of F,,. Recall that (Ag)r=1.. . n is a submartingale difference:
E[Xk|‘/_'.k+1} Z Xk SO E[X.,—2 - X7—1|.7'-7-2] 2 0 ie. E[Aku:k—i-l] Z 0 a.s.

This means that for any set B € F.,,

/AdeEO.
B

In particular, this is true for B = B, above. Hence
/AdeZO, for all AG.FTI,{7'1<]€§T2}.
A
Hence
/(XT2 - X, )dP >0.
A

O

If m <1 <...<m, are stopping times with respect to (Fi)x=1,....n, and (Xg)g=1,..n is a
submartingale with respect to (Fg)k=1,....n, then (X, X,,,...,X;, ) is a submartingale with
respect to (Fryy Fryy ooy Fr,)-

Theorem 17.2 (Kolmogorov's Maximal Inequality) — Let (Xj)x>1 be i.i.d. random variables
with E(X?) < oo for all k. Let
Sn = Z an
k=1

and we know that (S,,) is a martingale. Then Kolmogorov’s inequality states that

1
P (maX|Sk| > a) < —E(S2) forall a > 0.
k<n (6]

Note that maxy<, |Sk| > a is equivalent to maxy<,, S7 > a?. Hence, we can write the inequality
as:

E(S3)

2

P <maxS,3 > a2> <
k<n o

Recall that (S2) is a submartingale. The next result extends this inequality to an arbitrary
submartingale.

Theorem 17.3 (Maximal Inequality) — Let (Xx)g=1
(Fk)k=1,....n- Then for any o > 0,

» be a submartingale with respect to

.....

1
P Xo|>a) < ZE(X,]).
(1paxixl > o) < ZE(D)

Proof. Define: 7: Q — {1,2,...,n} as

() min{j < n: X;(w) > a} if there exists j < n s.t. X;(w) > a,
T
n otherwise (i.e., X;(w) < a Vi < n).
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Clearly, 7 is a stopping time w.r.t. (Fg)g=1,....n-

Proof of Claim: We have to prove that {r = k} € Fj, for all k = 1,...,n (see property 1 on
page 1).

Let {r;};=1,...n be arbitrary. We have two cases:

Case 1: {r; < m}

For {7 =k} =} 1{X; <o} N{Xx > a} € /i

Case 2: {r; =n}

For {r =n}= ﬂ;”zl{Xj < a} € Fy.

Define 7 > n (also a stopping time). Clearly, 71 < 75. By Optional Sampling Theorem
(Theorem 35.2)

E[X,,|Fr] > X, as.

Let M, = max{X;,i <7}, for 7 =1,...,n. Clearly, M,, < M, <--- < M, .

Let us examine the event {M,, > a}.

Claim: {M, > a} € F,ie, {M,>a}nN{n <mn}eF,forallm=1,...,n.

Proof of Claim: We will show that: Vo =1,... n.

{Mn Z O[}ﬁ{’]’l S 7'2} = {MT2 2 a}

To prove (7), we use double-inclusion:

(Q) Let w € {M,, > a}. Then M,,(w) > a. But since M, (w) = max{X;(w),i < 7} and 7 (w)
is the smallest index ¢ for which X;(w) > «, we have {7 (w) < 72}.

(D) If 75 = n, the inclusion is clear. If 79 = n — 1, by the definition of 71, X;, > «. But
M,, > X, , s0o M., > «. On the event {r; < 72}, we have M, < M,,. Hence, {M,, — X,, > 0}.

Remark: If 7,79, ...,7, are stopping times w.r.t. (F;);=1,... n, then (X, X.,,..., X, )isa
submartingale w.r.t. (Fr, Frys- .y Fr,)-

Coming back to (8), we recall that (8) means that
/ X,,dP > / X, dP VA€F,,,
A A
we will this inequality with A = {M,, > a} € F;,, hence

/1{]\4”201})(72 dP > /1{]\/[72&})(71 dP.

To summarize, we obtain that:

/ X,,dP < / X, dP 9)
{M,,>a} {M,,>a}

On the other hand, {M, > o} = J;_,{Xk > a}. Soif w € {M,, > a}, then 75 = n such that
X, (w) > aand 7 (w) < 7o.

Hence
/ X, dP = aP(M, > «a) (10)
{M,>a}

Putting (9) and (10) together, we get:

aP(M, > «) g/ X;dp - X; dPg/(Xj[—i—X;)dP:EﬂXnD
(M, >a} (M, >0} o
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§18.1 Martingales Continued

Let [a, b] be an interval, and X7, X, ..., X,, are random variables. Inductively, we define variables
01,09,...,0, as follows:

min{j <n:X; <a} if thereexists j <nst. X; <a

0' ==
! n otherwise

For any k < n:

e if k is even,

min{j <n;j > o1 and X; > f} if there exists j <ns.t. j > 01 and X; >
oL =
¥ n otherwise

e if k£ is odd,
min{j <n;j > 0,1 and X; < a} if there exists j <ns.t. j > op—1 and X; < «
oL =
¥ n otherwise
We define the number U of upcrossings of [a,b] by X1,...,X,, as the largest index 7 s.t.

X, <a<f< X,

T2i—1
Example: n = 17. Fix w € Q.
In this picture,
U(w) =2,
0'1(0.)) = 4, O'Q(W) = 67 0'3(&)) = 10, 0’4(&)) = 12, 05(00) = 167 Og —...=017 = 17

Theorem 18.1 (Doob's Upcrossing Theorem) — Let (Xj)k=1,...n be a submartingale w.r.t.
(Fk)k=1,....n and U be the number of upcrossings of [a,b] by Xi,...,X,. Then

E(|Xn|) + lal

E) < 5o

Proof. Let
Y: = max{ X} — a,0}

Note that ¢ (z) = max{z — «, 0} is a convex and non-decreasing function ¢ : R — R.
By Theorem 35.1 (iii), (Yx)k=1,....n is a submartingale w.r.t. (Fi)r=1,... n-

Note that o1, ..., 0, are stopping times w.r.t. (Fi)g=1,..n (exercise).
Moreover,
o for k=1,

min{j <mn;X,; =0} if there exists j <ns.t. X; =0
O— =
§ n otherwise

e for k even,

min{j <n;j > o1 and X; > f} if there exists j <ns.t. j > op—1 and X; >
Or =
¥ n otherwise
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e for k odd,

n otherwise

{min{j <n;j > o_1 and X; =0} if there exists j <ns.t. j > 0,1 and X; =0
O —

Then U is the number of upcrossings of [0, 6] by Y1,...,Y,.
Note that 1 < o1 < 09 < ... < g, = n. By the Optional Stopping Theorem (Th. 35.2),

(Yo, )k=1,....n is a submartingale w.r.t. (Fy, )k=1,....n-

..........

Hence,
E(YUk |‘T:‘7k—1) ZYok,l Vk:2,,n

In particular,
E(Ys) 2 E(Ys,,) Yk=2,....n

It follows that

n

Y, > Yan > Yon - Yal = Z(Yo'k - Ykal)

k=2

Z(Yo'k Y5 )= Z Yo, = Yo )+ Z Yor = Yo, 1)
k=2 k=2 k=2

k even k odd

Hence,
n n
EV)ZE| Y (Yo, =Yo )| +E| D (Yo = Yo ) | 20
Kven Wodd

IfY,,, > 6, then
Y0'2i - Y021‘71 > ¢

Since there are U such differences, we get

ZzeU

and so
E() ) = 0E(U)
From (2) and (3), we get
E(X
Finally,
E(Y,) = / max{ X, — a,0}dP < / X, — aldP < E(|Xa]) + |a
Q Q
> B(|Xa]) + o]
nl) + |
E < = =7
) < ZED-

§18.2 Martingale Convergence Theorem

If (X,,)n>1 is a submartingale w.r.t. (F,) and

K = SupE(|Xn|) < o0,

n>1

then there exists an integrable random variable X such that X,, — X a.s. Moreover, E(|X|) < 1.
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Proof

Fix a, 8 € R with a < 3. Let U2 be the number of upcrossings of [a, 8] by X1,...,X,. By
Theorem 35.4,

E(|X,]) +«a . K+« _—
B -« B—a

Note that (U2") is a non-decreasing sequence. Hence

EUR”) <

lim U™” exists (but may be c0).
n—oo

By Monotone Convergence Theorem,

EUXP) 1 B( lim UP).
n—oo

By (7),

K
E(lim o) < =12

n—00 —

< 0Q.

Hence
lim U < oo as.  (8).

n—oo

For o, 8 € R with a < 3, let

X" =limsup X, and X, =liminfX,.

n—00 n—00
Then,
X* = inf sup X and X, =sup inf Xj.
n>1 k>n n>1 k>n
Claim

{we: X,(w)<a<f<X"(w)}C {wGQ:nli_{I;oUsﬂ(w) =0}

with probability 0.

Proof of Claim

Xi(w) = sung;ELXk(w) <o

implies
Vn, inf Xj(w) < o
k>n
Similarly,
X*(w) > 8
implies
Vn, sup Xi(w) > S.
k>n
By (8),
PX.<a<p<X")=0 Va,peR,a<p.
From here,

0<P(X,<X*)=P U Xi<a<p<xi|< ) PX.<a<pf<X")=0
a,fEQ,a<p a,BEQ,a<p
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So,
P(X,<X*)=0 and P(X,=X")=1.

Hence, lim,, ;o X, = X exists.
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