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⋆ These notes were created during my review process to aid my own understanding and
not written for the purpose of instruction. I originally wrote them only for myself, and they
may contain typos and errors a. No professor has verified or confirmed the accuracy of these
notes. With that said, I’ve decided to share these notes on the off chance they are helpful to
anyone else.

aAny corrections are greatly appreciated.

§1 January 8, 2024

§1.1 Sums of independent random variables

Strong Law of Large Numbers: Let (Xi)i≥1 be independent and identically distributed (i.i.d.)
random variables with finite expected value E[X1]. Define Sn =

∑n
i=1Xi. Then, the Strong Law

of Large Numbers states:

Sn

n
→ E[X1] almost surely as n→ ∞.

Kolmogorov 0-1 Law: If (Xn)n≥1 are independent random variables, then for any event A
in the tail σ-field T , defined as

T =

∞⋂
n=1

σ(Xn, Xn+1, . . . ),

we have P(A) ∈ {0, 1}.

Corollary 1.1

If (Xn)n≥1 are independent random variables, and A =
{
limn→∞

Sn

n = 0
}

and B =
{Sn converges}, then P(A) ∈ {0, 1} and P(B) ∈ {0, 1}.

Theorem 1.2 (Kolmogorov Maximal Inequality) — Let (Xn)n≥1 be independent random
variables with E(Xn) = 0 and E(X2

n) <∞ for all n. Then, for any α > 0,

P
(
max
k≤n

|Sk| ≥ α

)
≤ 1

α2
E(S2

n).

Proof. Let Ãk = {|Sk| ≥ α} and note that {maxk≤n |Sk| ≥ α} =
⋃n

k=1 Ãk. We disjointize the

events Ãk by taking:

Ãk = Ãk \

(
k−1⋃
i=1

Ãi

)
for k = 2, . . . , n,

and

Ãk =

k⋃
i=1

Ãi for k = 1, . . . , n.

It can be proven that

max
k≤n

|Sk| ≥ α is equivalent to

n⋃
k=1

Ãk.

Note that:

E(S2
n) =

∫
Ω

S2
n dP ≥

n∑
k=1

∫
Ãk

S2
n dP =

n∑
k=1

∫
Ãk

(S2
k + (Sn − Sk)

2) dP,
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January 8, 2024 Probability Theory II, Hanan Ather

where (Ãk)k=1,...,n are disjoint.

E(S2
n) ≥

n∑
k=1

∫
Ak

(
S2
k + 2Sk(Sn − Sk) + (Sn − Sk)

2
)
dP.

Since (Sn − Sk)
2 ≥ 0, this simplifies to:

E(S2
n) ≥

n∑
k=1

∫
Ak

(
S2
k + 2Sk(Sn − Sk)

)
dP.

Noting that ∫
Ak

Sk(Sn − Sk) dP =

∫
Ak

(
k∑

i=1

Xi

) n∑
j=k+1

Xj

 dP,

and since {Xi}ni=1 are independent, we have

E

( k∑
i=1

Xi

) n∑
j=k+1

Xj

 = 0.

Thus, ∫
Ak

Sk(Sn − Sk) dP = 0,

and

E(S2
n) =

n∑
k=1

E(X2
k) = 0.

It follows that:

E(S2
n) ≥

n∑
k=1

α2P(Ak) = α2
n∑

k=1

P(Ak),

where Ak = {|Sk| ≥ α}, and the events Ak are disjoint.
In summary, we obtained:

P

(
n⋃

k=1

Ak

)
≤ 1

α2
E(S2

n).

The conclusion follows from (1) and (2).

Theorem 1.3 (Etemadi’s Inequality) — Let (Xn)n≥1 be independent random variables and
let Sn =

∑n
i=1Xi. Then, for any α > 0, we have

P

(
max
1≤r≤n

|Sr| ≥ 3α

)
≤ 3 max

1≤r≤n
P (|Sr| ≥ α).

Proof. Omitted.

Theorem 1.4 (Kolmogorov’s Criterion) — Let (Xn)n≥1 be independent random variables
with E(Xn) = 0 for all n and

∑∞
n=1E(X

2
n) < ∞. Then, the series

∑∞
n=1Xn converges

almost surely.

Proof: Step 1. Note that by Kolmogorov’s maximal inequality, for each integer n ≥ 1 and ϵ > 0,
we have

P

(
max
1≤r≤n

|Sn+r − Sn| > ϵ

)
≤ 1

ϵ2

n+r∑
i=n+1

E(X2
i ),
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where Sn+r − Sn =
∑n+r

i=n+1Xi and (Xi) are independent random variables with E(Xi) = 0.
Letting r → ∞, we get

P

(
sup
r≥1

|Sn+r − Sn| > ϵ

)
≤ 1

ϵ2

∞∑
i=n+1

E(X2
i ).

Finally, letting n→ ∞, we obtain

lim
n→∞

P

(
sup
r≥1

|Sn+r − Sn| > ϵ

)
= 0 ∀ϵ > 0.

This completes the proof of the assertion.

5
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§2 January 10, 2024

§2.1 Convergence of Random Series continued

Proof of Theorem 22.6 (Continued from last time). Step 1 concluded with:

lim
n→∞

P

(
sup
r≥1

|Sn+r − Sn| > ϵ

)
= 0 ∀ϵ > 0. (1)

Step 2: Define En(ϵ) =
{
sups,r≥n |Ss − Sr| > 2ϵ

}
and let E(ϵ) =

⋂∞
n=1En(ϵ).

Note that P (En(ϵ)) ↓ P (E(ϵ)) as n→ ∞.

Furthermore, observe that if |Sj − Sn| > 2ϵ then |Si − Sn| > ϵ or |SR − Sn| > ϵ for some
i, R ≥ n. To see this, assume by contradiction that both |Si − Sn| ≤ ϵ and |SR − Sn| ≤ ϵ. Then

|Sj − SR| = |(Sj − Sn) + (Sn − SR)| ≤ |Sj − Sn|+ |Sn − SR| ≤ 2ϵ,

which contradicts our assumption that |Sj − SR| > 2ϵ.

Hence,

sup
j,R≥n

|Sj − SR| > 2ϵ =⇒
⋃

j,R≥n

(|Sj − Sn| > ϵ) or (|SR − Sn| > ϵ) ,

and so, En(ϵ) =
⋃

j≥n {|Sj − Sn| > ϵ}, which we denote by An(ϵ).

Therefore, we can summarize that

P

 ⋃
R≥n

AR

 ≤ 1

ϵ2
E(S2

n),

Recall that An(ϵ) =
{
supj≥n |Sj − Sn| > ϵ

}
and by equation (1), P (An(ϵ)) → 0 as n→ ∞.

Since P (En(ϵ)) ≤ P (An(ϵ)) by the squeeze principle, we have P (En(ϵ)) → 0 as n→ ∞. Thus,

P (E(ϵ)) = 0 ∀ϵ > 0. (3)

Finally, define E =
⋃

ϵ>0E(ϵ). Then, by countable additivity,

P (E) ≤
∑
ϵ>0

P (E(ϵ)) = 0.

To summarize, we have shown that P (E) = 0 (equation 3).

Note that

E =

{
∃ϵ > 0 such that ∀n, sup

j≥n
|Sj − Sn| > 2ϵ

}
= {(Sn)n is not a Cauchy sequence} .

Hence, P (Ec) = 1. This proves that (Sn)n is a convergent sequence almost surely.

Theorem 2.1 (22.7) — Let (Xn)n≥1 be a sequence of independent random variables and

Sn =
∑n

i=1Xi. If Sn → S almost surely, then Sn
a.s.−−→ S.

Proof. The main effort will be to prove again that (1) holds. Then, exactly as in the proof of
Theorem 22.6, we conclude that (Sn)n≥1 converges almost surely to a limit that we may call

T . Since Sn
a.s.−−→ T implies that Sn → P , and by uniqueness of the limit, T = S almost surely.

Hence Sn → S almost surely.

Let us prove (1). The probability that the partial sums deviate from S by at least ϵ can be
bounded by

P (|Sn+j − Sn| ≥ ϵ) ≤ P (|Sn+j − S| ≥ ϵ

2
) + P (|Sn − S| ≥ ϵ

2
).
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Taking the supremum over j ≥ 1, we obtain

sup
j≥1

P (|Sn+j − Sn| ≥ ϵ) ≤ sup
j≥1

P (|Sn+j − S| ≥ ϵ

2
) + P (|Sn − S| ≥ ϵ

2
).

As n→ ∞, both terms on the right-hand side tend to zero since Sn → S almost surely. Recall
that Sn → S almost surely means that for every ϵ > 0, P (|Sn − S| > ϵ/2) → 0 as n→ ∞. Hence,
for ϵ > 0, there exists Nϵ ∈ N such that P (|Sj − S| > ϵ/2) < δ for all j ≥ Nϵ. Therefore, if
h > Nϵ, then supj≥h P (|Sj − S| > ϵ/2) < δ. Thus, lim suph→∞ supj≥h P (|Sj − S| > ϵ/2) = 0,
which proves (1).

We return to (5). Taking the limit as n→ ∞ in (5), we obtain:

lim sup
n→∞

sup
j≥1

P (|Sn+j − Sn| > ϵ) = 0 (6)

By Etemadi’s Maximal Inequality, we have

P ( max
1≤j≤n

|Sn+j − Sn| > ϵ) ≤ 3 max
1≤j≤n

P (|Sn+j − Sn| > ϵ/3).

Let n→ ∞; we get

P (sup
j≥1

|Sn+j − Sn| > ϵ) ≤ 3 sup
j≥1

P (|Sn+j − Sn| > ϵ/3) → 0 as n→ ∞ by (6).

By the Squeeze Principle, (1) follows.

Theorem 22.8 (Three Series Theorem). Let (Xn) be independent random variables, and

define X
(c)
n as the truncated random variable at level c:

X(c)
n =

{
Xn if |Xn| ≤ c,

0 if |Xn| > c.

Here, c > 0.

a) If
∑
Xn converges almost surely, then

∑
P (|Xn| > c),

∑
E[X

(c)
n ], and

∑
Var[X

(c)
n ] converge

for all c > 0.

b) If there exists c > 0 such that all three series
∑
P (|Xn| > c),

∑
E[X

(c)
n ], and

∑
Var[X

(c)
n ]

converge, then
∑
Xn converges almost surely.

Proof. In order that
∑
Xn converge with probability 1 it is necessary that the three series

converge for all positive c and sufficient that they converge for some positive c.

Proof of Sufficiency. Suppose that the series (22.13) converge, and put m
(c)
n = E[X

(c)
n ]. By

Theorem 22.6,
∑

(Xn −m
(c)
n ) converges with probability 1, and since

∑
m

(c)
n converges, so does∑

Xn. Since P (Xn ̸= X
(c)
n i.o.) = 0 by the first Borel–Cantelli lemma, it follows finally that∑

Xn converges with probability 1.

§2.2 Weak Convergence

Recall (from MAT5170) let (Ω,F , P ) be a prob. space, and X : Ω → R r.v. i.e.

{X ∈ A} = {ω ∈ Ω;X(ω) ∈ A} ∈ F for any A ∈ R

Here R is the class of Borel sets of R.

• The law of X is a prob. measure on (R,R) given by:

µ(A) := µX(A)
def
= P (X ∈ A) ∀A ∈ R

7



January 10, 2024 Probability Theory II, Hanan Ather

• The distribution function (c.d.f) of X is a function F = FX : R → [0, 1] given by:

F (x) = P (X ≤ x) for all x ∈ R

= µ((−∞, x])

where µ is the law of X

Note that:
µ((−∞, x)) = F (x−) = lim

y↗x
F (y)

µ({x}) = F (x)− F (x−) the jump of F at x

Properties of F :

1. F is non-decreasing

2. F is right-continuous

3. limx→−∞ F (x) = 0, limx→∞ F (x) = 1

Definition 2.2 (Convergence in Distribution) Let (Xn)n be a sequence of random variables
defined on probability spaces (Ωn,Fn, Pn) and X be a random variable defined on the
probability space (Ω,F , P ). We say that (Xn) converges in distribution to X, denoted as

Xn
d
=⇒ X or Xn

d−→ X, if for all points x ∈ R at which FX(x) = P (X ≤ x) is continuous, we

have
FXn(x) = Pn(Xn ≤ x) → FX(x) as n→ ∞.a

aThis implies that the cumulative distribution functions (c.d.f.’s) satisfy FXn(x) → FX(x), and for the
associated probability measures µn, µ, we have µn((−∞, x]) → µ((−∞, x]) for all x such that µ({x}) = 0.

Remark: If µn(−∞, x] = Pn(Xn ≤ x) and µ(−∞, x] = P (X ≤ x) then µn ⇒ µ.

Example 2.3 (Example 25.1). Let Xn be a sequence of random variables in F with P (Xn = 1).
Define

Xn =

{
n on − n,

0 otherwise.

The c.d.f. of Xn is:

Fn(x) = P (Xn ≤ x) =

{
0 if x < n,

1 if x ≥ n.

For any x ∈ R fixed,

lim
n→∞

Fn(x) =

{
1 if n > x,

0 otherwise.
= 0.

So we will be tempted to say that Fn ⇒ F where F (x) = 0 for all x. But F is not a distribution
function! (since limx→∞ F (x) ̸= 1)
Therefore, we cannot say Fn ⇒ F .

8
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§3 January 15, 2024

§3.1 Convergence of Distributions, Probability, & Almost Sure

Definition 3.1 (Convergence in Distribution) Let Xn : Ωn → R be a random variable defined
on probability space (Ωn,Fn, Pn), and X : Ω → R be defined on probability space (Ω,F , P ).
We say that (Xn)n converges in distribution to X if

FXn(x) = Pn(Xn ≤ x) → P (X ≤ x) = FX(x) for all points x ∈ R s.t. P (X = x) = 0

We write Xn ⇒ X or Xn
d−→ X.

Remark: If µn(−∞, x] = Pn(Xn ≤ x) and µ(−∞, x] = P (X ≤ x), then µn ⇒ µ.

Definition 3.2 Let (Xn) be random variables defined on the same probability space (Ω,F , P ).

a) We say that (Xn) converges in probability to X if

lim
n→∞

P (|Xn −X| > ε) = 0 ∀ε > 0.

We write Xn
P−→ X.

b) We say that (Xn) converges to X almost surely (a.s.) or with probability 1 if

P ( lim
n→∞

Xn = X) = 1.

We write Xn
a.s.−−→ X.

Theorem 3.3 (25.2) — We will prove the following two claims:

a) If Xn → X a.s., then Xn
P−→ X.

b) If Xn
P−→ X, then Xn

d−→ X.

Proof. a) Fix ε > 0. Let An = {ω ∈ Ω | |Xn(ω)−X(ω)| ≥ ε}.
Recall Theorem 1.1:

P (lim supAn) ≤ lim supP (An) ≤ lim inf P (An) ≤ P (lim inf An)

It is enough to prove that
P (lim supAn) = 0 (4)

Recall that:

lim supAn =

∞⋂
N=1

⋃
n≥N

An = {ω | ∃N, ∀n ≥ N,ω ∈ An}

= {ω | ∃N, ∀n ≥ N, |Xn(ω)−X(ω)| ≥ ε}

Note that:

(lim supAn)
c =

∞⋃
N=1

⋂
n≥N

Ac
n = {ω | ∀ε > 0,∃N, ∀n ≥ N, |Xn(ω)−X(ω)| < ε}

by De Morgan’s Law, which implies {Xn} converges to X hence P ((lim supAn)
c) = 1. So (4)

holds. Let X ∈ R be such that P (X = x) = 0. Let ε0 be arbitrary.

b)

9



January 15, 2024 Probability Theory II, Hanan Ather

1. Note that:
{Xn ≤ x} ⊆ {|Xn −X| ≥ ε} ∪ {X ≤ x− ε}

To see this, assume by contradiction that |Xn−X| < ε and X > x+ ε. Then Xn−X > −ε
and X > x+ ε. Hence

Xn = (Xn −X) +X > −ε+ (x+ ε) = x.

This is a contradiction.

2. From 1, we deduce that:

P (Xn ≤ x) ≤ P (|Xn −X| ≥ ε) + P (X ≤ x− ε)

which can be written as:

P (X ≤ x− ε) ≤ lim
n→∞

P (Xn ≤ x) ≤ lim
n→∞

P (Xn ≤ x+ ε) for all ε > 0.

3. Finally, let ε→ 0. We get

P (X ≤ x) ≤ lim
n→∞

P (Xn ≤ x) ≤ P (X ≤ x)

Hence,
lim
n→∞

P (Xn ≤ x) = P (X ≤ x).

This completes the proof since P (X = x) = 0.

Theorem 3.4 (Convergence in Distribution Implies Convergence in Probability) — Let (Xn)

be a sequence of random variables defined on the same probability space. If Xn
d−→ X for all

ω ∈ Ω, where a ∈ R, then Xn
P−→ X.

Proof. Let ε > 0 be arbitrary. We want to prove that P (|Xn − a| > ε) → 0 as n→ ∞.
Note that

{Xn − a > ε} = {Xn > a+ ε} ∪ {Xn < a− ε} = {Xn > a+ ε} ∪ {Xn < a− ε}

and
P (|Xn − a| > ε) = P (Xn > a+ ε) + P (Xn < a− ε) (7)

We know that Xn
d−→ X i.e., FXn(x) → FX(x) for all x ∈ R where P (X = x) = 0 (i.e., FX is

continuous at x).
Recall that

FX(x) = P (X ≤ x) =

{
0 if x < a,

1 if x ≥ a.

Hence
P (Xn ≤ x) → 0 for all x < a.

and
P (Xn ≥ x) → 1 for all x > a.

We let n→ ∞ in (7):

P (Xn > a+ ε) = 1− P (Xn ≤ a+ ε) = 1− FXn
(a+ ε) → 1− 0 = 0,

P (Xn < a− ε) ≤ P (|Xn − a| > ε) → 0.

In summary, both terms converge to 0. This proves that P (|Xn − a| > ε) → 0 as n→ ∞.

10
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Theorem 3.5 (Slutsky’s Theorem) — If Xn
d−→ X and Yn −Xn

P−→ 0, then Yn
d−→ X.

Proof. Let F be the distribution function of X, i.e., F (x) = P (X ≤ x), and let x be a continuity
point of F , i.e., P (X = x) = 0. Let ε > 0 be arbitrary. Choose y′ and y′′ continuity points of F
such that y′ < x < y′′ and

F (x)− F (y′) < ε and F (y′′)− F (x) < ε

where
lim
y↑x

F (y) = F (x−) = F (x) and lim
y↓x

F (y) = F (x+).

Let ε > 0 be such that y′ is x− ε and y′′ is x+ ε. Similarly to (5) and (6), it can be proved
that:

P (Xn ≤ y′)− P (|Xn −X| ≥ ε) ≤ P (Yn ≤ x) ≤ P (Xn ≤ y′′) + P (|Xn −X| ≥ ε) (exercise)

Taking n→ ∞, we get:

P (X ≤ y′) = lim
n→∞

P (Xn ≤ x) = lim
n→∞

P (Xn ≤ y′′) ≤ F (y′′) = F (x) + ε

Finally, letting ε→ 0, we get:

F (x) = lim
n→∞

P (Yn ≤ x) ≤ lim
n→∞

P (Xn ≤ x) ≤ F (x)

This proves that:
lim

n→∞
P (Xn ≤ x) = F (x).

11
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§4 January 17, 2024

§4.1 Fundamental Theorems

Theorem 4.1 (Skorohod Representation Theorem) — Let {µn} and µ be probability measures
on (R,R) such that µn ⇒ µ. Then there exists a probability space (Ω,F , P ) and random
variables (Yn)n on this space such that a:

• The distribution of Yn is µn for all n, i.e., P ◦ Y −1
n = µn for all n.

• Distribution of Y is µ.

• Yn(ω) → Y (ω) for all ω ∈ Ω.

aRecall:

(P ◦X−1)(A)
def
= P (X−1(A)) where X−1(A) = {ω ∈ Ω;X(ω) ∈ A}

Proof: Omitted.

Theorem 4.2 (Continuous Mapping Theorem) — Let h : R → R be a measurable function
and Dh be the discontinuity points of h. Let {µn}, µ be probability measures on (R,R) such
that µn ⇒ µ. Assume that µ(Dh) = 0. Then

µn ◦ h−1 ⇒ µ ◦ h−1.

Recall:
h : R → R µ ◦ h−1(A)

def
= µ(h−1(A))

where
h−1(A) = {x ∈ R;h(x) ∈ A}.

a

aRemark: Note that Dh ∈ R. See the proof in the textbook.

Proof. By Theorem 25.6 (Skorohod Representation Theorem), there exists a probability space
(Ω′,F ′, P ′) and random variables {Yn, Y } on this space such that P ◦Y −1

n = µn and P ◦Y −1 = µ,
and Yn(ω) → Y (ω) for all ω ∈ Ω′.
Let ω ∈ Ω′ but Y (ω) /∈ Dh. Then h is continuous at Y (ω) and hence h(Yn(ω)) → h(Y (ω)).
Denote by Ω′

∼ the set {ω ∈ Ω′;Y (ω) /∈ Dh}. Then

P (Ω′
∼) = P ({ω ∈ Ω′, Y (ω) /∈ Dh}) = P (Y −1(Dc

h)) = 1− P (Y −1(Dh)) = 1− µ(Dh) = 1.

and so P (Ω′
∼) = 1. This proves that h(Yn) → h(Y ) almost surely.

Hence h(Yn)
d−→ h(Y ) by Theorem 25.2 (a.s. convergence implies convergence in probability),

which in turn implies convergence in distribution. This means that P ◦ (h(Yn))−1 → P ◦ (h(Y ))−1.
This proves that µn ◦ h−1 → µ ◦ h−1.

Corollary 4.3

If Xn
d−→ X and h : R → R is a measurable function such that P (X ∈ Dh) = 0, then

h(Xn)
d−→ h(X).

Proof. Note that Xn
d−→ X means that µn → µ where P ◦ X−1

n = µn for n and P ◦ X−1 = µ,
and P (X ∈ Dh) = (P ◦X−1)(Dh) = µ(Dh). Then by Theorem 25.7, µn ◦ h−1 → µ ◦ h−1. So

h(Xn)
d−→ h(X).

Law of hn: Law of h(X) (see below).

12
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Recall:

P ◦ (h(X))−1(A) = P ({ω ∈ Ω;h(X(ω)) ∈ A})
= P ({ω ∈ Ω;X(ω) ∈ h−1(A)})
= (P ◦X−1)(h−1(A))

= µ(h−1(A))

= (µ ◦ h−1)(A).

Corollary 4.4

Suppose that Xn
P−→ a, where a ∈ R is a constant. Let h : R → R be measurable and

continuous at a. Then h(Xn)
P−→ h(a).

Proof. By Theorem 25.2, Xn
P−→ a, hence, we let X(ω) = a for all ω ∈ Ω. Note that

{X ∈ Dh} = {a ∈ Dh} = ∅, so P (X ∈ Dh) = 0. So by Corollary 1, h(Xn)
d−→ h(a). By

Theorem 25.3, h(Xn)
P−→ h(a).

Example 4.5 (25.8). Suppose that Xn
d−→ X and {an}, {bn} are real numbers such that

an → a ∈ R and bn → b ∈ R. Then

anXn + bn
d−→ aX + b.

(See also problem 25.2 for a generalization.)

Proof. Recall Slutsky’s Theorem: If Xn
d−→ X, and Yn −Xn

P−→ 0, then Yn
d−→ X.

Example 25.7: If Xn
d−→ X and sn → 0, then snXn

d−→ 0.
Note that

(anXn + bn)− (aX + b) = (an − a)Xn + (bn − b)
d−→ 0 (by ex. 25.7)

by TRS 25.5.

In addition, because h : R → R given by h(x) = ax+ b is continuous since Xn
d−→ X, we also

have h(Xn)
d−→ h(X), i.e.,

anXn + bn
d−→ aX + b.

In summary, we proved:{
(anXn + bn)− (aX + b)

d−→ 0 (which is equivalent to P → 0)

anXn + bn
d−→ aX + b.

By Slutsky’s Theorem, we can take the sum and conclude that anXn + bn
d−→ aX + b.

Theorem 4.6 (Portmanteau Theorem) — Let µn, µ be probability measures on R. The
following statements are equivalent:

(i) µn → µ

(ii)
∫
fdµn →

∫
fdµ for any f : R → R which is continuous and bounded

(iii) µn(A) → µ(A) for any set A ∈ R which is a continuity set, i.e., µ(∂A) = 0 where
∂A = Ā \A◦ is the boundary of A

13
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Proof. (i) ⇒ (ii): By Skorohod Representation Theorem, there exists a probability space
(Ω′,F ′, P ′) and random variables {Yn, Y } on this space such that:

P ◦ Y −1
n = µn and P ◦ Y −1 = µ,

and Yn(ω) → Y (ω) for all ω ∈ Ω′.
Let f : R → R which is continuous and bounded. Then the discontinuity set of f is Df = ∅,

hence µ(Df ) = 0.
Moreover, if Yn(ω) → Y (ω) for all ω ∈ Ω′, then:∫

R
fdµn =

∫
Ω′
f(Yn)dP

′ →
∫
Ω′
f(Y )dP ′ =

∫
R
fdµ

by Bounded Convergence Theorem (Thm 16.5) and Change of Variables for P ◦ Y −1
n and

P ◦ Y −1.

Recall: Change of Variable (21.1)

Ω
P−→ R f−→ R, f(X) = f ◦X∫

Ω

f(X)dP =

∫
R
fd(P ◦X−1)

We can also write this as: ∫
Ω

f(X(ω))dP (ω) =

∫
R
f(x)d(P ◦X−1)(x)

14
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§5 January 22, 2024

§5.1 Intergration to the limit

Theorem 5.1 (25.11) — If Xn
d−→ X, then E(|Xn|) is bounded above by lim inf E(|Xn|). If

Xn
d−→ X, then E(|Xn|) ≤ lim infn→∞E(|Xn|).

Proof. Let µn be the law of Xn. Then µn → µ where µ is the law of X.
By Skorohod Representation Theorem, there exists a probability space (Ω′,F ′, P ′) and random

variables {Yn, Y } on this space such that:

P ◦ Y −1
n = µn and

P ◦ Y −1 = µ,

and Yn(ω) → Y (ω) for all ω ∈ Ω′. By Fatou’s Lemma, E′(|Y |) ≤ lim infn→∞E′(|Yn|). (Here
E′ is expectation w.r.t. P ′) But E(|X|) = E′(|Y |) and E(|Xn|) = E′(|Yn|) for all n. Let µn

be the law of Xn and µ the law of X. By the Skorohod Representation Theorem, there exists
a probability space (Ω′,F ′, P ′) and random variables {Yn} and Y on this space such that Yn
converges to Y almost surely and the law of Yn under P ′ is µn and the law of Y under P ′ is µ.
By Fatou’s Lemma, E′(|Y |) ≤ lim inf E′(|Yn|). Here E′ denotes expectation with respect to P ′.
But E(|Xn|) = E′(|Yn|) and E(|X|) = E′(|Y |).

The Fatou Lemma (Thm 16.3) states that if {fn} are non-negative measurable
functions, then

∫
lim inf fndµ ≤ lim inf

∫
fndµ.

Recall (MAT5170) Fatou’s Lemma (Thm.16.3). Let (Ω,F , µ) be a measure space such that
µ(Ω) <∞. Assume (fn) are measurable R-valued functions such that fn → f almost everywhere
(w.r.t. µ).

If (fn) is uniformly integrable and f is integrable, then∫
Ω

fndµ→
∫
Ω

fdµ.

Theorem 5.2 (15.12) — If Xn
d−→ X and (Xn) is uniformly integrable, then X is integrable

and E(Xn) → E(X).

Proof. Let µn be the law of Xn and µ the law of X. Then µn → µ. By Skorohod Representation
Theorem, there exists a probability space (Ω′,F ′, P ′) and random variables Yn, Y on this space
such that the law of Yn under P ′ is µn and the law of Y under P ′ is µ, and Yn(ω) → Y (ω) for all
ω ∈ Ω′.
By Fatou’s Lemma, since E(|Xn|) is uniformly integrable, it is bounded, hence E(Xn) →

E(X).

Recall (MAT5170) Fatou’s Lemma (Thm.16.3). Let (Ω,F , µ) be a measure space such that
µ(Ω) <∞. Assume (fn) are measurable R-valued functions such that fn → f almost everywhere
(w.r.t. µ).

If (fn) is uniformly integrable and f is integrable, then∫
Ω

fndµ→
∫
Ω

fdµ.

Theorem 5.3 (15.12) — If Xn
d−→ X and (Xn) is uniformly integrable, then X is integrable

and E(Xn) → E(X).

15
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Proof. By Skorohod Representation Theorem (as in the proof of Th.25.11), there exists a
probability space (Ω′,F ′, P ′) and random variables Yn, Y on (Ω′,F ′, P ′) such that

• the law of Yn is µn (where µn is the law of Xn),

• the law of Y is µ (where µ is the law of X),

• Yn(ω) → Y (ω) for all ω ∈ Ω′.

Note that Yn are uniformly integrable since∫
Ω′

|Yn|dP ′ =

∫
{|Y |>α}

|Yn|dP ′ =

∫
{|X|>α}

|Xn|dP =

∫
Ω

|Xn|dP

when |Yn| > α.
Change of variables (Th.16.13)∫

Ω

f(X)dP =

∫
R
f(z)d(P ◦X−1)(z) =

∫
R
fdµ

By Theorem 16.14, E′(Yn) → E′(Y ). This gives us the desired conclusion since:

E′(Yn) = E(Xn) for all n and E′(Y ) = E(X).

Here E′ is expectation with respect to P ′.

§5.2 Characteristic Functions

Definition 5.4 a) Let µ be a probability measure on (R,R). The characteristic function of µ
is:

φ(t) =

∫ ∞

−∞
eitxµ(dx) =

∫ ∞

−∞
cos(tx)µ(dx) + i

∫ ∞

−∞
sin(tx)µ(dx)

for all t ∈ R.
(Recall: eit is defined as cos t+ i sin t for all t ∈ R.)

b) Let X : Ω → R be a random variable on a probability space (Ω,F , P ). Let µ be the
law of X. Then the characteristic function of X is:

φ(t) = E(eitX) =

∫
R
eitxdP =

∫
R
eitxµ(dx)

Observation: Since |eitx|2 = cos2(tx) + sin2(tx) = 1,

|φ(t)| =
∣∣∣∣∫

R
eitxµ(dx)

∣∣∣∣ ≤ ∫
R
|eitx|µ(dx) = µ(R) = 1.

1. φ(0) = E(ei·0) = E(1) = 1

2. φ is uniformly continuous on R:

|φ(t+ ε)− φ(t)| =
∣∣∣∣∫

R
(ei(t+ε)x − eitx)µ(dx)

∣∣∣∣
≤
∫
R
|ei(t+ε)x − eitx|µ(dx)

=

∫
R
|eitx| · |eiεx − 1|µ(dx)

=

∫
R
|eiεx − 1|µ(dx) → 0 by Bounded Convergence Theorem since

|eiεx − 1| ≤ |eiεx|+ 1 = 2 for all x as ε→ 0.

16
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§6 January 24, 2024

§6.1 Computing Characteristic Function

Example 6.1. Example: Let X ∼ N(0, 1). We aim to compute φ(t) = E[eitX ] for t ∈ R.
The characteristic function φ(t) is given by:

φ(t) =

∞∑
k=0

(it)k

k!
E[Xk] (1)

We use the property: for differentiable functions g : R → R,

E[g′(X)] = E[Xg(X)] (2)

Since

E[g′(X)] =

∫ ∞

−∞
g′(x)

1√
2π
e−

x2

2 dx =

∫ ∞

−∞
g(x)x

1√
2π
e−

x2

2 dx = E[Xg(X)],

by integration by parts.
Applying (2) for g(x) = xk, then g′(x) = kxk−1. So (2) becomes:

E[kXk−1] = E[X ·Xk−1] (3)

Hence,
E[Xk] = kE[Xk−1] for k ≥ 1 (4)

By symmetry of the standard normal distribution, all odd powers of X have an expected value of
zero, i.e., E[Xk] = 0 for k odd.
For even powers, using the property from before:

k = 2 : E[X2] = 1,

k = 4 : E[X4] = 3 · E[X2] = 3,

k = 6 : E[X6] = 5 · E[X4] = 5 · 3 = 15,

and so on.

In general, for k = 2n:

E[X2n] = 1 · 3 · 5 · · · (2n− 1) = (2n− 1)!! (double factorial)

Characteristic Function: Returning to the characteristic function:

φ(t) =

∞∑
n=0

(it)2n

(2n)!
E[X2n] =

∞∑
n=0

(it)2n

(2n)!
(2n− 1)!! =

∞∑
n=0

(−1)nt2n

2nn!

where we used the relation (2n)!/(2n− 1)!! = 2nn!.

Recalling the Taylor series expansion for e−t2/2, we have:

e−t2/2 =

∞∑
n=0

(−1)n(t2/2)n

n!
=

∞∑
n=0

(−1)nt2n

2nn!

Thus, φ(t) = e−t2/2.

Remark: The characteristic function of a random variable aX + b (where a, b ∈ R) is given by:

φaX+b(t) = E
[
eit(aX+b)

]
= eitbE

[
eitaX

]
= eitbφX(at).

This expression uses the fact that the characteristic function of X evaluated at at can be modified

17
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by a shift in the variable corresponding to the addition of b.
In particular, if a = −1 and b = 0, the characteristic function of −X is:

φ−X(t) = φX(−t) for all t ∈ R.

Next goal: Our next goal is to show that the characteristic function determines uniquely the
law (or the distribution) of a random variable.

Theorem 6.2 (Theorem 26.2.) — Two parts of the theorem:

(a) Let µ be a probability measure on R. Let φ(t) be the characteristic function of µ. If
a, b ∈ R are such that µ({a}) = 0 and µ({b}) = 0, then

µ((a, b]) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t) dt.

Convention: In this formula, the function e−ita−e−itb

it is defined for t = 0 to be equal
to b− a (by l’Hopital’s Rule).

(b) Let µ and ν be probability measures on (R,B(R)). If µ and ν have the same charac-
teristic function, then µ = ν.

Proof. (a) Let IT = 1
2π

∫ T

−T
e−ita−e−itb

it eitxdt. Then, by Fubini’s theorem,

IT =
1

2π

∫ T

−T

e−ita − e−itb

it

(∫ ∞

−∞
eitxµ(dx)

)
dt

=

∫ ∞

−∞

(
1

2π

∫ T

−T

e−ita − e−itb

it
eitxdt

)
µ(dx)

=

∫ ∞

−∞
ϕT (x)µ(dx)

We can apply Fubini’s Theorem since:∣∣∣∣e−ita − e−itb

it
· eitx

∣∣∣∣ = ∣∣∣∣e−ita − e−itb

it

∣∣∣∣ · ∣∣eitx∣∣ ≤ b− a

∣∣e−ita − e−itb
∣∣ = ∣∣∣e−ita

(
1− eit(b−a)

)∣∣∣ = ∣∣e−ita
∣∣ · ∣∣∣1− eit(b−a)

∣∣∣ ≤ t(b− a)

And ∫ T

−T

(b− a)µ(dx)eitx ≤ (b− a)(2T )ϵ

(Note: It was crucial for this argument to work with [−T, T ].)
We compute ϕT (x) explicitly, as follows:

ϕT (x) =
1

2π

[∫ T

−T

eit(x−a)

it
dt−

∫ T

−T

eit(x−b)

it
dt

]

=
1

2π

[
−i
∫ T

−T

cos(t(x− a))

t
dt+ i

∫ T

−T

sin(t(x− a))

t
dt

]

+i

∫ T

−T

cos(t(x− b))

t
dt− i

∫ T

−T

sin(t(x− b))

t
dt

=
1

2π

[
(−i) · 2

∫ T

0

sin(t(x− a))

t
dt+ i · i · 2

∫ T

0

sin(t(x− b))

t
dt

]

18
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=
1

π

[∫ T

0

sin(t(x− a))

t
dt−

∫ T

0

sin(t(x− b))

t
dt

]
Recall:

IT =

∫ ∞

−∞
ϕT (x)µ(dx)

We want to let T → ∞, and apply the Dominated Convergence Theorem (D.C.T.)
It can be proved that

lim
T→∞

∫ T

0

sin(θt)

t
dt =


π
2 if θ > 0

0 if θ = 0

−π
2 if θ < 0

In our case,

lim
T→∞

∫ T

0

sin(t(x− a))

t
dt =


−π

2 if x < a

0 if x = a
π
2 if x > a

lim
T→∞

∫ T

0

sin(t(x− b))

t
dt =


−π

2 if x < b

0 if x = b
π
2 if x > b

Hence

lim
T→∞

ϕT (x) =



0 if x < a
1
2 if x = a

1 if a < x < b
1
2 if x = b

0 if x > b

Recall:

IT =

∫ ∞

−∞
ϕT (x)µ(dx)

We want to let T → ∞, and apply Dominated Convergence Theorem (D.C.T.)
It can be proved that

lim
T→∞

∫ T

0

sin(θt)

t
dt =


π
2 if θ > 0

0 if θ = 0

−π
2 if θ < 0

Next time!
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§7 January 29, 2024

§7.1 Characteristic Functions Continued

Corollary 7.1

Let µ be a probability measure with characteristic function φ. If∫ ∞

−∞

|φ(t)|
|t|

dt <∞

then µ has a continuous density f given by:

f(x) =
1

2π

∫ ∞

−∞
e−itxφ(t)dt (Inversion Formula)

Proof. Let F (x) = µ((−∞, x]) be the cumulative distribution function corresponding to µ. We
have to prove that F is differentiable. Then, for ε > 0,

F (x+ ε)− F (x)

ε
=
µ((−∞, x+ ε])− µ((−∞, x])

ε
=
µ((x, x+ ε])

ε

= lim
T→∞

1

2π

∫ T

−T

e−it(x+ε) − e−itx

itε
φ(t)dt

By Theorem 26.2, as T → ∞, this limit exists and hence, the function F is differentiable. By
D.C.T.,

F (x+ ε)− F (x)

ε
=

1

2π

∫ ∞

−∞

e−itx − e−it(x+ε)

itε
φ(t)dt (2) (1)

To justify the application of D.C.T, we note:∣∣∣∣e−itx − e−it(x+ε)

itε

∣∣∣∣ = ∣∣∣∣e−itx(1− e−itε)

itε

∣∣∣∣ ≤ |t| (since |1− e−itε| ≤ |tε|)

Recall: ∣∣∣∣∣eit −
n∑

k=0

(it)k

k!

∣∣∣∣∣ ≤ min

{
|t|n+1

(n+ 1)!
,
2|t|n

n!

}

∣∣∣∣e−itx − e−it(x+ε)

itε
φ(t)

∣∣∣∣ ≤ |tε|
|ε|

|φ(t)| = |φ(t)| and |φ(t)| is an integrable function.

Note that (2) also holds for ε < 0. By another application of D.C.T.,

F ′(x) = lim
ε→0

F (x+ ε)− F (x)

ε
=

1

2π

∫ ∞

−∞
lim
ε→0

e−itx − e−it(x+ε)

itε
φ(t)dt

=
1

2π

∫ ∞

−∞
e−itxφ(t)dt
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Note that f is continuous on R:

|f(x+ ε)− f(x)| =
∣∣∣∣ 12π

∫ ∞

−∞
e−it(x+ε)φ(t) dt− 1

2π

∫ ∞

−∞
e−itxφ(t) dt

∣∣∣∣
=

∣∣∣∣ 12π
∫ ∞

−∞
(e−it(x+ε) − e−itx)φ(t) dt

∣∣∣∣
≤ 1

2π

∫ ∞

−∞
|e−itx(e−itε − 1)||φ(t)| dt

=
1

2π

∫ ∞

−∞
|e−itε − 1| · |φ(t)| dt by D.C.T. as ε→ 0.

1. If X ∼ N(0, 1), then X has density f(x) = 1√
2π
e−

x2

2 , x ∈ R and characteristic function:

φ(t) = e−
t2

2 (used the power series expansion).

2. If X ∼ Uniform(0, 1) then X has density f(x) =

{
1 if x ∈ [0, 1],

0 if x /∈ [0, 1].
and characteristic

function:

φ(t) =

∫ 1

0

eitxdx =
eit − 1

it

(
or

1

it
(eit − 1)′

)
.

3. If X ∼ Exponential(λ), then X has density f(x) = λe−λx⊮(0,∞)(x) and characteristic
function:

φ(t) =

∫ ∞

0

eitxe−λxdx =
e(it−λ)x

it− λ

∣∣∣∣∞
0

=
1

1− it
. (since the limit as x→ ∞ is 0).

4. If X ∼ Double-Exponential, then X has density f(x) = 1
2e

−|x|, x ∈ R and characteristic
function:

φ(t) =

∫ ∞

−∞
eitx · 1

2
e−|x|dx

=
1

2

(∫ ∞

0

e−(1−it)xdx+

∫ 0

−∞
e−(1+it)xdx

)
=

1

2

(
1

1− it
+

1

1 + it

)
=

1

2

(
1 + it+ 1− it

1 + t2

)
=

1

1 + t2
.

5. If X ∼ Cauchy, then X has density f(x) = 1
π

1
1+x2 , x ∈ R and characteristic function:

φ(t) =

∫ ∞

−∞
eitx

1

π

1

1 + x2
dx

=
1

π

∫ ∞

−∞
e−itx 1

1 + x2
dx

=
1

π

[
e−itx 1

1 + (−it)2

]
=

1

π

e−itx

1 + t2
.
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(Note that the characteristic function of a Cauchy distribution is an exercise in some texts
and can be derived using complex analysis techniques.)

Theorem 7.2 (Continuity Theorem) — Let {µn} and µ be probability measures on R, with
characteristic functions {φn} and φ respectively. Then

µn → µ if and only if φn(t) → φ(t) for all t ∈ R.

Proof. Part 1 ”Only If”: Suppose that µn → µ. Then, by Portmanteau theorem, we know that∫
fdµn →

∫
fdµ for all f : R → R continuous and bounded.

In our case,

φn(t) =

∫ ∞

−∞
e−itxµn(dx) =

∫ ∞

−∞
cos(tx)µn(dx) + i

∫ ∞

−∞
sin(tx)µn(dx)

implies that as n→ ∞,∫ ∞

−∞
cos(tx)µn(dx) + i

∫ ∞

−∞
sin(tx)µn(dx) →

∫ ∞

−∞
e−itxµ(dx) = φ(t).

Part 2 ”If”: We do not discuss this. It uses ”tightness”. Details are in the book.

§7.2 Central Limit Theorem

Theorem 7.3 (Lindeberg–Lévy Theorem) — Let {Xi}i≥1 be a sequence of independent and
identically distributed (i.i.d.) random variables, with E[X2

i ] <∞. We denote µ = E[Xi] and
σ2 = Var(Xi). Let Sn =

∑n
i=1Xi. Then

Sn − nµ

σ
√
n

d−→ Z ∼ N(0, 1).

Proof. Let I = 1
2π

∫ T

−T
e−ita−e−itb

it φ(t) dt. Then, by Fubini’s Theorem,

IT =
1

2π

∫ T

−T

e−ita − e−itb

it

∫ ∞

−∞
eitx µ(dx) dt

=

∫ ∞

−∞

(
1

2π

∫ T

−T

e−it(a−x) − e−it(b−x)

it
dt

)
µ(dx)

=

∫ ∞

−∞
ΦT (x)µ(dx),

where ΦT (x) is defined as 1
2π

∫ T

−T
e−it(a−x)−e−it(b−x)

it dt.

We can apply Fubini’s Theorem since:∣∣∣∣e−ita − e−itb

it
· eitx

∣∣∣∣ = ∣∣∣∣e−it(a−x) − e−it(b−x)

it

∣∣∣∣ ≤ b− a,

∣∣eita − eitb
∣∣ = ∣∣∣eitb(eit(a−b) − 1)

∣∣∣ ≤ |t(b− a)|,

which is integrable over t in the interval [−T, T ] and measurable with respect to µ.
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Theorem 7.4 (Central Limit Theorem for Triangular Arrays with Lyapunov condition) — For
each n ≥ 1, let Xn1, Xn2, . . . , Xnn be independent random variables with E(Xni) = 0 for all
i = 1, . . . , n and

σ2
ni = E(X2

ni) <∞ ∀i = 1, . . . , n.

Let Sn =
∑n

i=1Xni and λ
2
n = E(S2

n) =
∑n

i=1 σ
2
ni. Assume that λ2n ≥ 0 for all n. Suppose

that there exists δ > 0 such that

E(|Xni|2+δ) <∞ for all i = 1, . . . , n,

and

lim
n→∞

1

λ2+δ
n

n∑
i=1

E(|Xni|2+δ) = 0 (Lyapunov condition).

Then
Sn

λn

d−→ Z ∼ N(0, 1).

Proof. It suffices to show that the Lyapunov condition holds, and then we apply Theorem 27.2.
We have:

1

λ2n

n∑
i=1

∫
{|Xni|≥ϵλn}

X2
nidP =

1

λ2n

n∑
i=1

E
[
X2

ni1{|Xni|≥ϵλn}
]

≤ 1

ϵδλ2+δ
n

n∑
i=1

E
[
|Xni|2+δ

]
=

1

ϵδλ2+δ
n

E

[
n∑

i=1

|Xni|2+δ

]
→ 0 by the Lyapunov condition.

Hence the Lyapunov condition holds.
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§8 February 7, 2024

§8.1 Section 33: Conditional Probability (continued)

Example 8.1. If P (B) > 0, G = σ({B}) → {∅,Ω, B,Bc}

f(ω) =

{
P (A | B) if ω ∈ B

P (A | Bc) if ω ∈ Bc

We prove that f satisfies conditions (i) and (ii) from the definition of P (A | G), i.e.,

(i) f is G-measurable (we checked this last time)

(ii)
∫
G
f dP = P (A ∩G) ∀G ∈ G∫

G

f dP = P (A ∩G) ∀G ∈ G (1)

Last time, we checked that (1) holds for G = ∅ and G = Ω.
Assume that G = B. Then∫

B

f dP =

∫
B

(P (A | B)1B + P (A | Bc)1Bc) dP

=

∫
B

P (A | B)dP = P (A | B)P (B) =
P (A ∩B)

P (B)
P (B)

= P (A ∩B)

This proves (1) for G = B.
The fact that (1) also holds for G = Bc is similar (exercise).

Example 8.2. Let (Ω,F , P ) be a probability space, A ∈ F , and G = σ({Bi}i≥1), where {Bi}i≥1

is a partition of Ω, Bi ∈ F , P (Bi) > 0 for all i ≥ 1. We claim that

P (A | G) =
∑
i≥1

P (A | Bi)1Bi
a.s. (2)

We prove (2): Let f =
∑

i≥1 P (A | Bi)1Bi . We check that f satisfies conditions (i) and (ii)
from the definition of P (A | G).
Condition (i): f is G-measurable since 1Bi

is G-measurable for all i ≥ 1.
Condition (ii): We have to check that∫

G

f dP = P (A ∩G) ∀G ∈ G (1)

Note that G =
{⋃

j∈I Bj | I ⊆ {1, 2, . . .}
}
. Taking G =

⋃
j∈I Bj , we have∫

G

f dP =
∑
j∈I

∫
Bj

f dP =
∑
j∈I

∫
Bj

P (A | Bj)dP =
∑
j∈I

P (A | Bj)P (Bj)

=
∑
j∈I

P (A ∩Bj) = P

A ∩

⋃
j∈I

Bj

 = P (A ∩G)

This proves (1).

Example 8.3. If A ∈ G, then P (A | G) = 1A a.s.
Recall:

1A(ω) =

{
1 if ω ∈ A

0 if ω /∈ A

Proof: We show that 1A satisfies conditions (i) and (ii) from the definition of P (A | G).
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(i) 1A is G-measurable since A ∈ G.
(ii) Let G ∈ G be arbitrary. Then∫

G

1A dP =

∫
Ω

1G∩A dP = P (G ∩A)

Example 8.4. If G = {∅,Ω}, then P (A | G) = P (A) a.s.
Proof: Let f = P (A). We prove that f satisfies conditions (i) and (ii).
(i) f is G-measurable since f is a constant random variable and so ∀B ∈ R,

f−1(B) = {ω ∈ Ω; f(ω) ∈ B} =

{
Ω if P (A) ∈ B

∅ if P (A) /∈ B
∈ G

(ii) We have to show that ∫
G

f dP = P (A ∩G) ∀G ∈ G (1)

We have two cases:

• G = ∅. Then ∫
G

f dP =

∫
∅
P (A) dP = 0 = P (A ∩ ∅) = P (A ∩G)

• G = Ω. Then ∫
G

f dP =

∫
Ω

P (A) dP = P (A) = P (A ∩ Ω) = P (A ∩G)

Definition 8.5 We say that event A is independent of the σ-field G if A is independent of G,
∀G ∈ G, i.e.,

P (A ∩G) = P (A) · P (G) ∀G ∈ G

Observation: Any event A is independent of the trivial σ-field G = {∅,Ω}. (Exercise)

Example 8.6. The event A is independent of G ⇐⇒ P (A | G) = P (A) a.s.
Proof: ⇒ Assume that A is independent of G. Let f = P (A). We prove that f satisfies

conditions (i) and (ii) from the definition of P (A | G).
(i) f = P (A) is a constant random variable. Hence, f is G-measurable.
(ii) We have to check that ∫

G

f dP = P (A ∩G) ∀G ∈ G (1)

Let G ∈ G be arbitrary. Then∫
G

f dP =

∫
G

P (A) dP = P (A)

∫
G

dP = P (A) · P (G) = P (A ∩G)

So (1) holds.
⇐ Suppose that P (A | G) = P (A) a.s. Let G ∈ G be arbitrary. Then, by property (ii) of

conditional probability, we know that∫
G

f dP = P (A ∩G), where f = P (A)

Note that ∫
G

f dP =

∫
G

P (A) dP = P (A) · P (G)

So, P (A) · P (G) = P (A ∩G).
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Definition 8.7 Let (Ω,F , P ) be a probability space, A ∈ F . Let X : Ω → R be a random
variable (i.e., X is F-measurable).

Let G = σ(X) = {X−1(B);B ∈ B(R)} where

X−1(B) = {ω ∈ Ω;X(ω) ∈ B} = {X ∈ B}

We say that P (A | G) is a version of the conditional probability of A given X, and we
denote this by P (A | X), i.e.,

P (A | X) := P (A | σ({X}))

This means that:{
(i) P (A | X) is σ(X)-measurable

(ii)
∫
B
P (A | X) dP = P (A ∩ {X ∈ B}) ∀B ∈ B(R)

Theorem 8.8 — Let (X,X , µ) and (Y,Y, ν) be measure spaces. µ and ν are σ-finite.
X × Y = {(x, y);x ∈ X, y ∈ Y }.

X ⊗ Y = σ({A×B;A ∈ X , B ∈ Y}) product σ-field

If E ∈ X ⊗ Y, then {
Ex = {y ∈ Y ; (x, y) ∈ E} ∀x ∈ X

Ey = {x ∈ X; (x, y) ∈ E} ∀y ∈ Y

Proposition 8.9. (i) If E ∈ X ⊗ Y then{
Ex ∈ Y ∀x ∈ X

Ey ∈ X ∀y ∈ Y

(ii) If f : X × Y → R is X ⊗ Y-measurable then{
y 7→ f(x, y) is Y-measurable ∀x ∈ X

x 7→ f(x, y) is X -measurable ∀y ∈ Y

Proposition 8.10. For any set E ∈ X ⊗ Y{
x 7→ ν(Ex) is X -measurable

y 7→ µ(Ey) is Y-measurable

Define

π′(E) =

∫
X

ν(Ex)µ(dx) and π′′(E) =

∫
Y

µ(Ey)ν(dy)

Then π′ and π′′ are measures on (X × Y,X ⊗ Y) and

π′(E) = π′′(E) =: π(E) ∀E ∈ X ⊗ Y

Moreover, π is the only measure on X × Y s.t.

π(A×B) = µ(A) · ν(B) ∀A ∈ X , ∀B ∈ Y

We denote π = µ× ν and we say that π is the product measure.
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Theorem 8.11 — (i) If f : X × Y → [0,∞) is X ⊗ Y-measurable, then

g : X → R, g(x) =

∫
Y

f(x, y)ν(dy) is X -measurable

h : Y → R, h(y) =

∫
X

f(x, y)µ(dx) is Y-measurable

and ∫
X

(∫
Y

f(x, y)ν(dy)

)
µ(dx) =

∫
Y

(∫
X

f(x, y)µ(dx)

)
ν(dy)

=

∫
X×Y

f(x, y)(µ× ν)(dx, dy) (4)

(ii) If f : X × Y → R is X ⊗ Y-measurable and integrable w.r.t. µ× ν, then{
g(x) is finite for µ-almost all x ∈ X, g is X -measurable

h(y) is finite for ν-almost all y ∈ Y, h is Y-measurable

and (4) holds.
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§9 February 12, 2024

§9.1 Conditional probability continued

Theorem 9.1 — Let X and Y be independent random variables and µ = P ◦ X−1,
ν = P ◦ Y −1. Then
a)

P ((X,Y ) ∈ B) =

∫
R
P ((x, Y ) ∈ B)µ(dx) ∀B ∈ R2 (2)

b)

P ((X ∈ A, (X,Y ) ∈ B) =

∫
R
P ((x, Y ) ∈ B)µ(dx) ∀A ∈ R ∀B ∈ R2 (4)

Proof. a) Since X,Y are independent, the law of (X,Y ) is µ× ν, i.e.,

P ◦ (X,Y )−1 = (P ◦X−1)× (P ◦ Y −1) = µ× ν

Recall:
Bx = {y ∈ R; (x, y) ∈ B} is the section of B at x

By Fubini’s Theorem,

(µ× ν)(B) =

∫
R
ν(Bx)µ(dx) (1)

Note that
(µ× ν)(B) = P ((X,Y ) ∈ B)

ν(Bx) = (P ◦ Y −1)(Bx) = P (Y ∈ Bx) = P ({ω ∈ Ω;Y (ω) ∈ Bx})

So
ν(Bx) = P ({ω ∈ Ω; (x, Y (ω)) ∈ B}) = P ((x, Y ) ∈ B)

Hence (1) gives our desired conclusion for a).

Proof. b) We write (1) for set B replaced by B′ = (A× R) ∩B, relation (1) becomes:

(µ× ν)(B′) =

∫
R
ν(B′

x)µ(dx) (3)

Note that

(µ×ν)(B′) = (P◦(X,Y )−1)(B′) = P ((X,Y ) ∈ B′) = P ((X,Y ) ∈ (A×R)∩B) = P (X ∈ A, (X,Y ) ∈ B) = LHS of (4)

B′
x = {y ∈ R; (x, y) ∈ B′} = {y ∈ R;x ∈ A and (x, y) ∈ B} =

{
∅ if x /∈ A

Bx if x ∈ A

ν(B′
x) =

{
0 if x /∈ A

ν(Bx) if x ∈ A

So

ν(B′
x) =

{
0 if x /∈ A

P ((x, Y ) ∈ B) if x ∈ A

Relation (3) gives exactly (4).
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Theorem 9.2 — Let X and Y be independent random variables, and J ⊆ R.
Consider the function

f(x) = P ((x, Y ) ∈ J) for all x ∈ R.

a) Then
P ((X,Y ) ∈ J | X) = f(X) a.s.

b) Let M = max(X,Y ). Then for all m ∈ R,

P (M ≤ m | X) = 1{X ≤ m}P (Y ≤ m) a.s.

Proof. a) We check that f(X) satisfies conditions (i) and (ii) from the definition of conditional
probability. Here G = σ(X).

(i) f(X) is σ(X)-measurable. This is clear.

(ii) Let G ∈ σ(X) be arbitrary. Then G = {X ∈ H} for some H ∈ B(R). Let P ◦X−1 = µ.∫
G

f(X) dP =

∫
{X∈H}

f(X) dP =

∫
H

f(x)µ(dx) (change of variable, Th 16.13)

∫
G

f(X) dP =

∫
Ω

f(X(ω))1G(ω) dP (ω) =

∫
H

f(x)µ(dx) =

∫
H

P ((x, Y ) ∈ J)µ(dx) (definition of f)

= P (X ∈ H, (X,Y ) ∈ J) (by (4))

In summary, we proved that:∫
G

f(X) dP = P (A ∩G) ∀G ∈ σ(X)

Proof. b) We use the result in part a). Note that

{M ≤ m} = {max(X,Y ) ≤ m} = {X ≤ m,Y ≤ m} = {(X,Y ) ∈ J}

where J = {(x, y) ∈ R2;x ≤ m and y ≤ m}.
By a),

P (M ≤ m | X) = P ((X,Y ) ∈ J | X) = f(X) a.s. (5)

where f(x) = P ((x, Y ) ∈ J).

Let us calculate f(x):

f(x) = P ((x, Y ) ∈ J) = P ({ω ∈ Ω;x ≤ m and Y (ω) ≤ m})

=

{
0 if x > m

P (Y ≤ m) if x ≤ m
= 1{x≤m}P (Y ≤ m)

Then
f(x) = 1{x≤m}P (Y ≤ m)

Relation (5) becomes:
P (M ≤ m | X) = 1{X≤m}P (Y ≤ m).

Recall: (MAT 5170): A family P of subsets of a set Ω is called a π-system if it is closed
under finite intersections, i.e., if A,B ∈ P then A ∩B ∈ P.

If µ and ν are measures on (Ω,F) and µ(A) = ν(A) for all A ∈ P, then µ = ν.
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Theorem 9.3 — Let (Ω,F , P ) be a probability space, G ⊆ F is a sub σ-field of F , A ∈ F .
Assume that G = σ(P) where P is a π-system and Ω =

⋃
i≥1Ai with Ai ∈ P.

Let f : Ω → [0,∞) be a function which satisfies:

(i) f is G-measurable and integrable

(ii)
∫
G
f dP = P (A ∩G) ∀G ∈ P

Then f = P (A | G) a.s.

Proof. Define

µ(G) =

∫
G

f dP, G ∈ G

ν(G) = P (A ∩G), G ∈ G

Both µ and ν are measures on (Ω,G).
By (ii), µ(G) = ν(G) ∀G ∈ P.

Hence, by Theorem 10.4, µ(G) = ν(G) ∀G ∈ G. The conclusion follows since f satisfies the
two conditions (i) and (ii) from the definition of P (A | G).
The next result shows that P (· | G) satisfies the same properties as the classical probability

measure P .

Theorem 9.4 — Theorem 33.2 (Properties of Conditional Probability) Let (Ω,F , P ) be a
probability space and G ⊆ F be a sub-σ-field.
1) P (∅ | G) = 0 a.s. and P (Ω | G) = 1 a.s.
2) P (A | G) ≥ 0 a.s. and P (A | G) ≤ 1 a.s. ∀A ∈ F
3) If {An}n≥1 are disjoint sets in F , then

P

⋃
n≥1

An | G

 =
∑
n≥1

P (An | G) a.s.

4) If A,B ∈ F and A ⊆ B, then

P (B \A | G) = P (B | G)− P (A | G) a.s.

P (A | G) ≤ P (B | G) a.s.

5) Inclusion-exclusion principle: For any A1, . . . , An ∈ F ,

P

(
n⋃

i=1

Ai | G

)
=

n∑
i=1

P (Ai | G)−
∑
i<j

P (Ai ∩Aj | G) + . . .+ (−1)n+1P

(
n⋂

i=1

Ai | G

)
a.s.

6) If {An}n≥1 are subsets of F such that An ↑ A ∈ F (i.e., An ⊆ An+1 and A =
⋃

n≥1An),
then

P (An | G) ↑ P (A | G) a.s.

Similarly, if An ↓ A (i.e., An ⊇ An+1 and A =
⋂

n≥1An), then

P (An | G) ↓ P (A | G) a.s.

7) If A ∈ F is such that P (A) = 1, then P (A | G) = 1 a.s.
If A ∈ F is such that P (A) > 0, then P (A | G) > 0 a.s.

Proof. 1) 1 is trivial: f = 0 satisfies conditions (i) and (ii) from the definition of P (∅ | G).

f = 1 satisfies P (Ω | G)
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2) Use the following result: If f : Ω → R is a G-measurable function and∫
G

f dP ≥ 0 ∀G ∈ G then f ≥ 0 a.s. (Section 15)

In our case, f = P (A | G) satisfies:∫
G

f dP = P (A ∩G) ≥ 0 ∀G ∈ G. Hence, f ≥ 0 a.s.

Similarly, the function f ′ = 1− P (A | G) satisfies:∫
G

f ′ dP =

∫
G

(1− P (A | G)) dP = P (G)−
∫
G

P (A | G) dP = P (G)− P (A ∩G) = P (G \A) ≥ 0

Hence f ′ ≥ 0 a.s., that is P (A | G) ≤ 1 a.s.
3) Let f =

∑
n≥1 P (An | G). We check that f satisfies conditions (i) and (ii) from the definition

of P (
⋃

n≥1An | G).
(i) f is G-measurable (limit of a seq. of G-measurable functions is G-measurable).
(ii) Let G ∈ G be arbitrary, and denote A =

⋃
n≥1An. We want to prove that:∫

G

f dP = P (A ∩G) (7)

∫
G

f dP =

∫
G

∑
n≥1

P (An | G) dP ≥ 0 (Corollary to Theorem 16.7)

∫
G

∑
n≥1

P (An | G) dP =
∑
n≥1

∫
G

P (An | G) dP =
∑
n≥1

P (An∩G) (by condition (ii) in the def. of P (An | G))

= P

⋃
n≥1

(An ∩G)

 = P

⋃
n≥1

An

 ∩G

 = P (A ∩G)

This proves (7).
4) - 7) Exercise.
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§10.1 Conditional Distributions continued

Theorem 10.1 — Let (Ω,F , P ) be a probability space, X : Ω → R is a random variable, and
G ⊆ F a sub-σ-field. Then there exists a function µ(H,ω) defined for any H ∈ B(R), ω ∈ Ω
such that the following conditions hold:

(a) µ(·, ω) is a probability measure on R, ∀ω ∈ Ω

(b) µ(H, ·) is a version of P (X ∈ H | G), ∀H ∈ B(R)

We say that µ is the conditional distribution of X given G. In particular, if G = σ(Y ), we
say that µ is the conditional distribution of X given Y .

For each r ∈ Q, let F (r, ·) be a version of P (X ≤ r | G), i.e.,

F (r, ω) = P (X ≤ r | G)(ω) for P -almost all ω ∈ Ω.

Properties of F :
1) If r, s ∈ Q with r ≤ s, then F (r, ω) ≤ F (s, ω) with probability 1.

P (X ≤ r | G)(ω) ≤ P (X ≤ s | G)(ω) since {X ≤ r} ⊆ {X ≤ s}.

Let Er,s = {ω ∈ Ω;F (r, ω) ≤ F (s, ω)}.
Then Er,s ∈ G and P (Er,s) = 1.
2) For every r ∈ Q fixed,

lim
n→∞

F

(
r +

1

n
, ω

)
= lim

n→∞
P

(
X ≤ r +

1

n
| G
)
(ω) = P (X ≤ r | G)(ω) = F (r, ω)

by property 6) in Theorem 33.2.
Let Er =

{
ω ∈ Ω; limn→∞ F

(
r + 1

n , ω
)
= F (r, ω)

}
. Then Er ∈ G with P (Er) = 1.

3)
lim
r→∞

F (r, ω) = lim
r→∞

P (X ≤ r | G)(ω) = P (Ω | G)(ω) = 1 with probability 1

{{X ≤ r}}r∈Q ↑ Ω

Let D1 = {ω ∈ Ω; limr→∞ F (r, ω) = 1}. Then D1 ∈ G and P (D1) = 1.
4)

lim
r→−∞

F (r, ω) = lim
r→−∞

P (X ≤ r | G)(ω) = P (∅ | G)(ω) = 0 with probability 1

{{X ≤ r}}r∈Q ↓ ∅

Let D2 = {ω ∈ Ω; limr→−∞ F (r, ω) = 0}. Then D2 ∈ G and P (D2) = 1.

Let S =
(⋂

r∈QEr

)
∩
(⋂

r,s∈QEr,s

)
∩D1 ∩D2. Then S ∈ G and P (S) = 1.

• For ω ∈ S, extend F (r, ω) to R by setting

F̄ (x, ω) := inf
r>x,r∈Q

F (r, ω)

Clearly, if x ∈ Q then F̄ (x, ω) = F (x, ω).

• For ω /∈ S, let F̄ (·, ω) := F ∗ where F ∗ is a fixed cumulative distribution function on R.

• For ω ∈ S, we check that F̄ (·, ω) : R → [0, 1] is a probability distribution function:

(a) right-continuity: limn→∞ F̄ (xn, ω) = F̄ (x, ω) if xn ↑ x
(b) non-decreasing: if x ≤ y, then F̄ (x, ω) ≤ F̄ (y, ω)
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(c) limx→∞ F̄ (x, ω) = 1

(d) limx→−∞ F̄ (x, ω) = 0

Hence, by Theorem 1.2, there exists a unique probability measure µ̄(·, ω) on R such that

µ̄((−∞, x], ω) = F̄ (x, ω) ∀x ∈ R

• For ω /∈ S, let µ̄∗ be the probability measure corresponding to F ∗, i.e.

µ̄∗((−∞, x]) = F ∗(x) = F ∗(x) ∀x ∈ R

Define

µ(H,ω) =

{
µ̄(H,ω) if ω ∈ S

µ̄∗(H) if ω /∈ S

Then µ(H,ω) is a probability measure on R ∀ω ∈ Ω, i.e. condition (a) holds.

We now prove that µ satisfies condition (b):
We will prove that µ(H, ·) = P (X ∈ H | G) a.s. by checking that µ(H, ·) satisfies conditions (i)

and (ii) from the definition of P (X ∈ H | G).
(i) We have to prove that µ(H, ·) is G-measurable, ∀H ∈ B(R).
Let L = {H ∈ B(R);µ(H, ·) is G-measurable} is a λ-system, i.e.

1) R ∈ L

2) If H ∈ L then Hc ∈ L

3) If (Hn)n≥1 are disjoint then
⋃

n≥1Hn ∈ L

P = {(−∞, r]; r ∈ Q} is a π-system, i.e.

• if A1, A2, . . . , An ∈ P then A1 ∩A2 ∩ . . . ∩An ∈ P

P ⊆ L since µ((−∞, r], ·) = F (r, ·) = P (X ≤ r | G)(·) if ω ∈ S, and hence µ((−∞, r], ·) =
P (X ≤ r | G) with probability 1.
Because P (X ≤ r | G) is G-measurable, it follows that µ((−∞, r], ·) is G-measurable.
To summarize, we have:

L = λ-system

P = π-system

P ⊆ L
Then, by Dynkin’s π-λ theorem (Theorem 3), it follows that:

σ(P) = L

Hence,
B(R) = σ(P) ⊆ L ⊆ B(R) i.e. L = B(R)

This means that µ(H, ·) is G-measurable ∀H ∈ B(R).
(ii) We want to prove that

P ({X ∈ H} ∩G) =
∫
G

µ(H,ω)P (dω) ∀G ∈ G,∀H ∈ B(R)

P ({X ∈ H} ∩G) =
∫
G

µ(H,ω)P (dω) ∀G ∈ G,∀H ∈ B(R)

Fix G ∈ G. Define
φ1(H) = P ({X ∈ H} ∩G)

φ2(H) =

∫
G

µ(H,ω)P (dω)
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Note that φ1(H) = φ2(H)∀H ∈ P, since if H = (−∞, r] with r ∈ Q

φ1((−∞, r]) = P ({X ≤ r} ∩G)

φ2((−∞, r]) =

∫
G

µ((−∞, r], ω)P (dω)

φ2((−∞, r]) =

∫
G

µ((−∞, r], ω)P (dω) =

∫
G

F (r, ω)P (dω) =

∫
G

P (X ≤ r | G)(ω)P (dω)

= P (X ≤ r | G)P (dω) = P ({X ≤ r} ∩G)

By the definition of conditional probability.
Since P is a π-system, φ1(H) = φ2(H)∀H ∈ B(R).

φ1((−∞, r]) = P ({X ≤ r} ∩G)

φ2((−∞, r]) =

∫
G

µ((−∞, r], ω)P (dω) =

∫
G

F (r, ω)P (dω) =

∫
G

P (X ≤ r | G)(ω)P (dω)

= P (X ≤ r | G)P (dω) = P ({X ≤ r} ∩G)

By the definition of conditional probability.
Since P is a π-system, φ1(H) = φ2(H)∀H ∈ B(R).

P ({X ∈ H} ∩G) =
∫
G

µ(H,ω)P (dω) ∀G ∈ G,∀H ∈ B(R)

Example 10.2. Let X,Y be r.v.’s on (Ω,F , P ) s.t. the law of (X,Y ) has density f(x, y), i.e.

P ((X,Y ) ∈ A) =

∫
A

f(x, y) dx dy ∀A ⊆ R2

Let fX(x) =
∫
R f(x, y) dy be the marginal density of X:

P (X ∈ B) =

∫
B

fX(x) dx ∀B ⊆ R

Define

fY |X(y | x) = f(x, y)

fX(x)
if fX(x) ̸= 0

Observation: ∫
R
fY |X(y | x) dy = 1 (exercise)

Define

Q(x,H) =

{∫
H
fY |X(y | x) dy if fX(x) ̸= 0

Q∗(H) if fX(x) = 0

Set
µ(H,ω) = Q(X(ω), H)

Claim: µ(H,ω) is the conditional distribution of Y given X.

Proof of this claim: We check properties a) and b) of Theorem 33.3
a) µ(·, ω) = Q(X(ω), ·) is indeed a probability measure ∀ω ∈ Ω
b) We have to check that µ(H, ·) is a version of P (Y ∈ H | X), i.e.

µ(H, ·) = P (Y ∈ H | X) a.s.

For this, we have to check that conditions (i) and (ii) are verified:

(i) µ(H, ·) = Q(X(·), H) is σ(X)-measurable. This is clear since Q is a function of X.
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(ii) We have to prove that

P ({Y ∈ H} ∩G) =
∫
G

µ(H,ω)P (dω) ∀G ∈ σ(X) = G (2)

Let us prove (2). Let G = {X ∈ E} ∈ σ(X) be arbitrary, with E ∈ B(R). Then

Let G = {X ∈ E} ∈ σ(X) be arbitrary, with E ∈ R.∫
G

µ(H,ω)P (dω) =

∫
{X∈E}

Q(X(ω), H)P (dω)

=

∫
{X∈E}

1E(X(ω))Q(X(ω), H)P (dω)

=

∫
Ω

1E(X(ω))Q(X(ω), H)P (dω)

=

∫
E

Q(x,H) (P ◦X−1)(dx) (change of variables theorem 16.13)

=

∫
E

Q(x,H) fX(x) dx

=

∫
E∩{fX(x)̸=0}

Q(x,H) fX(x) dx

=

∫
E∩{fX(x)̸=0}

(∫
H

fY |X(y|x) dy
)
fX(x) dx

=

∫
E∩{fX(x)̸=0}

∫
H

f(x, y) dy dx

=

∫
E

∫
H

f(x, y) dy dx

= P ((X,Y ) ∈ E ×H)

= P ({X ∈ E} ∩ {Y ∈ H}) (by definition of E and H)
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§11 February 28, 2024

§11.1 Conditional Expectation

⋆ Recall: We say that a r.v. P (A|G) is the conditional probability of A given G if:

1. P (A|G) is G-measurable and integrable

2.
∫
G P (A|G) dP = P (A ∩G) ∀G ∈ G

Note that P (A ∩G) =
∫
G 1A dP , (ii) can be stated as:∫

G
P (A|G) dP =

∫
G
1A dP ∀G ∈ G

Theorem 11.1 — Let (Ω,F , P ) be a probability space, G ⊆ F a sub-σ-field, and X : Ω → R
an integrable r.v. Then, there exists a r.v. g : Ω → R such that:

1. g is G-measurable and integrable

2.
∫
G
g dP =

∫
G
X dP ∀G ∈ G

If g′ : Ω → R is another r.v. satisfying (i) and (ii), then g = g′ a.s., i.e.

P ({ω ∈ Ω; g(ω) = g′(ω)}) = 1

We say that g is a (version of) the conditional expectation of X given G, and we denote

g = E(X|G)

Proof. Proof: Existence Case 1, X ≥ 0

Define

D(G) =

∫
G

X dP for all G ∈ G.

Clearly, D is a measure on (Ω,G).
Note that D is a finite measure:

D(Ω) =

∫
Ω

X dP = E(X) <∞.

Moreover, D is absolutely continuous with respect to P :

if P (G) = 0 then D(G) = 0.

By the Radon-Nikodym Theorem (Theorem 32.3), there exists a G-measurable function g :
Ω → R such that:

D(G) =

∫
G

g dP ∀G ∈ G.

From (1) and (2), ∫
G

X dP =

∫
G

g dP ∀G ∈ G.

Thus, g is clearly integrable. So, g satisfies (i) and (ii).

Proof. Case 2: X is arbitrary

Recall that any a ∈ R can be written as:

a = a+ − a− where a+ =

{
a if a ≥ 0

0 if a < 0
, a− =

{
0 if a ≥ 0

−a if a < 0

(Note: a+ ≥ 0, a− ≥ 0)
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Hence, for X(ω) ∈ R, we have:

X(ω) = X+(ω)−X−(ω) ∀ω ∈ Ω.

Both X+ and X− are non-negative r.v.’s. By Case 1,

• there exists a function g1 : Ω → R G-measurable and integrable s.t.∫
G

g1 dP =

∫
G

X+ dP ∀G ∈ G (3)

• there exists a function g2 : Ω → R G-measurable and integrable s.t.∫
G

g2 dP =

∫
G

X− dP ∀G ∈ G (4)

Take the difference between (3) and (4), we get:∫
G

(g1 − g2) dP =

∫
G

(X+ −X−) dP =

∫
G

X dP ∀G ∈ G.

Taking g = g1 − g2, we see that g satisfies (i) and (ii).

Lemma 11.2 — Lemma 1 If X is G-measurable, then E(X|G) = X a.s. (and integrable)

Proof. It is clear that g = X satisfies (ii) and (iii) of Theorem 1.

Lemma 11.3 — Lemma 2 If X is independent of G (i.e. {X ∈ B} and G are independent
for any B ∈ R, G ∈ G), then E(X|G) = E(X) a.s.

Proof. We check that g = E(X) satisfies (i) and (ii) from Theorem 1:

(i) g = E(X) is a constant r.v., so it is measurable w.r.t. any σ-field, and in particular it is
G-measurable. Clearly, g is integrable.

(ii) ∫
G

g dP =

∫
G

E(X) dP = E(X)

∫
G

dP = E(X) · P (G) ∀G ∈ G.∫
G

X dP =

∫
Ω

1GX dP = E(1GX) = E(1G) · E(X) = P (G) · E(X) for any G ∈ G.

(independent since X is indep. of G)

Example 11.4. Let X be an integrable r.v. on (Ω,F , P ) and G = σ({Bi}i≥1) where {Bi}i≥1 is
a partition of Ω, with P (Bi) > 0. Recall that an arbitrary set in G is of the form G =

⋃
i∈I Bi

for some I ⊂ {1, 2, . . .}. Find E(X|G).
Solution It can be proved that since E(X|G) is G-measurable and G = σ({Bi}i≥1), then

E(X|G) =
∑
i≥1

αi1Bi

for some αi ∈ R.
Let us find the constants αi ∈ R. We write property (ii) for G = Bi:∫

Bi

αi dP =

∫
Bi

X dP,
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i.e. αi

∫
Bi

dP =
∫
Bi
X dP, or equivalently αiP (Bi) =

∫
Bi
X dP . So αi =

1
P (Bi)

∫
Bi
X dP .

Hence,

E(X|G) =
∑
i≥1

(
1

P (Bi)

∫
Bi

X dP

)
1Bi

.

Remark: If there exist some i ≥ 1 such that P (Bi) = 0, for those values i we can choose
di ∈ R arbitrarily. In that case,

E(X|G) =
∑

{i≥1;P (Bi)>0}

(
1

P (Bi)

∫
Bi

X dP

)
1Bi

+
∑

{i≥1;P (Bi)=0}

di1Bi

Example 11.5. For any event A ∈ F and for any σ-field G ⊂ F ,

E(1A|G) = P (A|G) a.s.

Proof: We show that g = P (A|G) satisfies (i) and (ii) in Theorem 1:

(i) g is G-measurable (clear).

(ii)
∫
g dP =

∫
P (A|G) dP = P (A ∩G) =

∫
1A dP ∀G ∈ G.

Theorem 11.6 — Let (Ω,F , P ) be a probability space, X : Ω → R an integrable random
variable. Suppose that G = σ(P) where

P is a π-system, i.e., if A,B ∈ P then A ∩B ∈ P

and
Ω =

⋃
i≥1

Pi for some Pi ∈ P.

Let g : Ω → R be a function which satisfies:{
(i) g is G-measurable and integrable

(ii)′
∫
G
g dP =

∫
G
X dP ∀G ∈ P

Then g = E(X|G) a.s.

Proof. ∫
G

g dP =

∫
G

X dP =

∫
G

E(X|G) dP ∀G ∈ P.

By Theorem 16.10(iii), g = E(X|G) a.s.

Theorem 11.7 — Properties of Conditional Expectation Let (Ω,F , P ) be a probability
space, G ⊆ F a sub-σ-field; let X : Ω → R and Y : Ω → R be integrable random variables.

If X = a a.s. where a ∈ R, then E(X|G) = a a.s.

(i)(ii) (Linearity) E(aX + bY |G) = aE(X|G) + bE(Y |G) a.s. ∀a, b ∈ R

(iii) (Monotonicity) If X ≤ Y a.s., then E(X|G) ≤ E(Y |G) a.s.

(iv) |E(X|G)| ≤ E(|X||G)

Proof. (i) Clearly g = a satisfies (i) and (ii) from Theorem 1.

(ii) We let g = aE(X|G) + bE(Y |G). We show that g satisfies properties (i) and (ii) from the
definition of E(aX + bY |G) (Theorem 1):
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(a) g is G-measurable. This is clear since g is a linear combination of G-measurable
functions. Similarly, g is integrable.

(b)
∫
G
g dP =

∫
G
(aE(X|G)+bE(Y |G)) dP = a

∫
G
E(X|G) dP+b

∫
G
E(Y |G) dP = a

∫
G
X dP+

b
∫
G
Y dP =

∫
G
(aX + bY ) dP

∀G ∈ G.

(iii) (E(Y |G)− E(X|G)) dP =
∫
G
E(Y |G)dP −

∫
G
E(X|G)dP =

∫
G
Y dP −

∫
G
X dP =

∫
G
(Y −

X) dP ≥ 0

for all G ∈ G. Hence E(Y |G)− E(X|G) ≥ 0 a.s.

(iv)
−E(|X||G) ≤ E(X|G) ≤ E(|X||G)

This is true because
−|X| ≤ X ≤ |X|

and then we apply monotonicity:

E(−|X||G) ≤ E(X|G) ≤ E(|X||G).
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§12 March 4, 2024

§12.1 Conditonal Expectation Continued

Theorem 12.1 — Suppose that X,Y,Xn are integrable.

(i) If X = a with probability 1, then E[X | G] = a.

(ii) For constants a and b, E[aX + bY | G] = aE[X | G] + bE[Y | G].

(iii) If X ≤ Y with probability 1, then E[X | G] ≤ E[Y | G].

(iv) |E[X | G]| ≤ E[|X| | G].

(v) If limnXn = X with probability 1, |Xn| ≤ Y , and Y is integrable, then limnE[Xn |
G] = E[X | G] with probability 1.

Proof. If X = a with probability 1, the function identically equal to a satisfies conditions (i) and
(ii) in the definition of E[X | G], and so (i) above follows by uniqueness.

As for (ii), aE[X | G] + bE[Y | G] is integrable and measurable G, and∫
G

(aE[X | G] + bE[Y | G]) dP = a

∫
G

E[X | G]dP+b
∫
G

E[Y | G]dP = a

∫
G

XdP+b

∫
G

Y dP =

∫
G

(aX+bY )dP

for all G in G, so that this function satisfies the functional equation.

If X ≤ Y with probability 1, then∫
G

(E[Y | G]− E[X | G]) dP =

∫
G

(Y −X)dP ≥ 0

for all G in G. Since E[Y | G]−E[X | G] is measurable G, it must be nonnegative with probability
1 (consider the set G where it is negative). This proves (iii), which clearly implies (iv) as well as
the fact that E[X | G] = E[Y | G] if X = Y with probability 1.

To prove (v), consider Zn = supk≥n |Xk −X|. Now Zn ↓ 0 with probability 1, and by (ii), (iii),
and (iv),

|E[Xn | G]− E[X | G]| ≤ E[Zn | G].

It suffices, therefore, to show that E[Zn | G] ↓ 0 with probability 1. By (iii) the sequence E[Zn | G]
is nonincreasing and hence has a limit Z; the problem is to prove that Z = 0 with probability 1,
or, Z being nonnegative, that E[Z] = 0. But 0 ≤ Zn ≤ 2Y , and so (34.1) and the dominated
convergence theorem give

E[Z] =

∫
E[Z | G]dP ≤

∫
E[Zn | G]dP = E[Zn] → 0.

Theorem 12.2 (Theorem 34.2 (v) Dominated Convergence Theorem for Conditional Expectation)
— Let (Ω,F , P ) be a probability space and G ⊆ F a sub-σ-field. Let (Xn), X, Y be integrable
random variables. If Xn → X a.s. and |Xn| ≤ Y a.s.∀n, then

E(Xn|G) → E(X|G) a.s.

Proof. We proved it above.
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Theorem 12.3 — If X is integrable and the σ-fields G1 and G2 satisfy G1 ⊆ G2, then

E[E[X | G2] | G1] = E[X | G1]

with probability 1.

Proof. It will be shown first that the right side of (34.4) is a version of the left side if X = IG0

and G0 ∈ G. Since IG0
E[Y | G] is certainly measurable G, it suffices to show that it satisfies the

functional equation ∫
G

IG0
E[Y | G]dP =

∫
G

IG0
Y dP, G ∈ G.

But this reduces to ∫
G∩G0

E[Y | G]dP =

∫
G∩G0

Y dP,

which holds by the definition of E[Y | G]. Thus (34.4) holds if X is the indicator of an element of
G.
It follows by Theorem 34.2(ii) that (34.4) holds if X is a simple function measurable G. For

the general X that is measurable G, there exist simple functions Xn, measurable G, such that
|Xn| ≤ |X| and limnXn = X (Theorem 13.5). Since |XnY | ≤ |XY | and |XY | is integrable,
Theorem 34.2(v) implies that

lim
n
E[XnY | G] = E[XY | G]

with probability 1. But E[XnY | G] = XnE[Y | G] by the case already treated, and of course
limnXnE[Y | G] = XE[Y | G]. (Note that XnE[Y | G] = E[XnY | G] ≤ E[|XY | | G], so that the
limit XE[Y | G] is integrable.) Thus (34.4) holds in general. Notice that X has not been assumed
integrable.

Theorem 12.4 (Tower Property) — If X is measurable G, and if Y and XY are integrable,
then

E[XY | G] = XE[Y | G]

with probability 1.

Proof. Let X ′ = E(E(X | G2) | G1). We check that X ′ satisfies properties (i) and (ii) in the
definition of E(X | G1).

(i) X ′ is G1-measurable and integrable. This is clear.

(ii) We have to prove that: ∫
G

X ′ dP =

∫
G

X dP ∀G ∈ G1

Let G ∈ G1 be arbitrary. Then∫
G

X ′ dP =

∫
G

E(E(X | G2) | G1) dP =

∫
G

E(Y | G1) dP =

∫
G

Y dP

where Y = E(X | G2). By property (ii) in the definition of E(Y | G1), since G ∈ G1,∫
G

E(X | G2) dP =

∫
G

X dP (using property (ii) in the def. of E(X | G2))

⇒
∫
G

X dP.
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Therefore, ∫
G

X ′ dP =

∫
G

X dP ∀G ∈ G1.

If G1 ⊆ G2 then trivially E(E(X | G2) | G1) = E(X | G1).

Y = E(X | G2)

Y is G1-measurable, hence G2-measurable.

Lemma 12.5 — If X is G-measurable then E(X | G) = X a.s.

Recall Jensen’s inequality: If φ : R → R is a convex function, then

φ(E(X)) ≤ E(φ(X)) (5)

for any r.v. X for which X,φ(X) are integrable.

Example: φ(X) = |X|p, p ≥ 1

Then (5) says:
|E(X)|p ≤ E(|X|p) ∀p ≥ 1

In particular, |E(X)|2 ≤ E(X2).
Recall the following basic properties of convex functions:

1. Definition: φ is convex if

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y) ∀t ∈ (0, 1)

Remark: If G1 ⊆ G2 then trivially E(E(X | G2) | G1) = E(X | G1).

Y = E(X | G2)

Y is G1-measurable, hence G2-measurable.
Lemma (Feb 28): If X is G-measurable then E(X | G) = X a.s.
Recall: Jensen’s inequality: If φ : R → R is a convex function, then

φ(E(X)) ≤ E(φ(X)) (5)

for any r.v. X for which X,φ(X) are integrable.

Example: φ(X) = |X|p, p ≥ 1

Then (5) says:
|E(X)|p ≤ E(|X|p) ∀p ≥ 1

In particular, |E(X)|2 ≤ E(X2).
Recall the following basic properties of convex functions:

1. Definition: φ is convex if

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y) ∀t ∈ (0, 1)

2. If φ is convex, then φ is continuous.

3. If φ is convex,

φ′(x+0 ) = lim
ϵ→0+

φ(x0 + ϵ)− φ(x0)

ϵ
exists and is finite

φ′(x−0 ) = lim
ϵ→0−

φ(x0 − ϵ)− φ(x0)

ϵ
exists and is finite
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4. If φ is convex and φ′(x−0 ) ≤ A(x0) ≤ φ′(x+0 ), then

φ(x) ≥ φ(x0) +A(x0)(x− x0) ∀x ∈ R (6)

(6) says that the graph of φ stays above any support line through (x0, φ(x0)). This happens
for any x0 ∈ R.

Lemma 3 (Jensen’s Inequality):

φ(E(X)) ≤ E(φ(X)) (2)

for any convex function φ and any random variable X such that the expectations exist.
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§13 March 6, 2024

§13.1 Proof of Conditional Jensen Inequality

Recall: Jensen Inequality says for any convex function φ,

φ(E(X)) ≤ E(φ(X))

Goal: Extend this inequality to E(· | G)

Lemma 13.1 (Jensen Inequality for Conditional Expectations) — For any convex function
φ : R → R and for any random variable X such that X and φ(X) are integrable,

φ(E(X | G)) ≤ E(φ(X) | G) a.s.

Proof. Recall from last time that ∀x0 ∈ R, ∀x ∈ R, φ′(x−0 ) ≤ A(x0) ≤ φ′(x+0 ),

φ(x) ≥ φ(x0) +A(x0)(x− x0) (2)

Fix ω ∈ Ω. We apply (2) to

{
x0 = E(X | G)(ω)
x = X(ω)

. We obtain:

φ(X(ω)) ≥ φ(E(X | G)(ω)) +A(E(X | G)(ω))(X(ω)− E(X | G)(ω))

We drop ω from the writing. We write:

φ(X) ≥ φ(E(X | G)) +A(E(X | G))(X − E(X | G)) (2)

Case 1

Assume that E(X | G) is bounded, i.e. |E(X | G)| ≤M for some M ≥ 0.

Note that if φ is convex, then φ and A are bounded on bounded sets. Hence φ(E(X | G)) and
A(E(X | G)) are bounded (hence integrable).

Take E(· | G) in (2). We use monotonicity of cond. expect. (Th.34.2.(iii)). We get:

E(φ(X) | G) ≥ E[φ(E(X | G)) | G] + E[A(E(X | G))(X − E(X | G)) | G]

Case 2: General Case

Let Gn = {ω ∈ Ω; |E(X | G)(ω)| ≤ n}. Note that Gn ∈ G and

E(IGn
X | G) = IGn

E(X | G)

E(X | G) =

{
E(X | G) on Gn

0 on Gc
n

Hence E(IGn
X | G) is bounded. By applying Case 1 (to IGn

X instead of X), we obtain:

φ (E(IGnX | G)) ≤ E (φ(IGnX) | G) a.s. ∀n ≥ 1 (3)

We evaluate separately the two sides of (3):

LHS (left hand side) is equal to:

LHS of (3) = φ (E(IGn
X | G)) = φ (IGn

E(X | G)) (4)

because IGn
is G-measurable.
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RHS: Note that

(IGn
X)(ω) = IGn

(ω)X(ω) =

{
X(ω) if ω ∈ Gn

0 if ω ∈ Gc
n

φ(IGnX)(ω) =

{
φ(X(ω)) if ω ∈ Gn

φ(0) if ω ∈ Gc
n

This means that φ(IGnX) = φ(X)IGn + φ(0)IGc
n
. Hence,

RHS of (3) = E[φ(X)IGn+φ(0)IGc
n
| G] = E[φ(X)IGn | G]+E[φ(0)IGc

n
| G] = IGnE[φ(X) | G]+IGc

n
E[φ(0) | G] = IGnE[φ(X) | G]+φ(0)IGc

n

(5)

We will use (4) and (5) in inequality (3). We obtain:

φ(IGn
E(X | G)) ≤ IGn

E[φ(X) | G] + φ(0)IGc
n

∀n ≥ 1 a.s.

We take the limit as n→ ∞. We use the fact that {Gn ⊆ Gn+1∀n},
⋃∞

n=1Gn = Ω.

Hence, IGn → IΩ = 1 and IGc
n
→ 0.

Since φ is convex, φ is continuous. Hence φ(IGn
E(X | G)) → φ(E(X | G)) as n→ ∞.

Therefore,
φ(E(X | G)) ≤ E(φ(X) | G) a.s.

Recall (Th.33.3) X = r.v., G ⊆ F sub σ-field. The conditional distribution of X given G is
µ(H,ω) for H ∈ R, ω ∈ Ω such that:

(i) µ(·, ω) is a probability measure on R for ω ∈ Ω.

(ii) µ(H, ·) = P (X ∈ H | G) a.s. ∀H ∈ R

§13.2 Conditional Distribution and Conditional Expectation

Theorem 13.2 (Th.34.5: Conditional Distribution and Conditional Expectation) — Let
(Ω,F , P ) be a probability space, G ⊆ F is a sub σ-field, X is an integrable r.v. Let µ(H,ω)
be the cond. distrib. of X given G.
Let φ : R → R be a measurable function s.t. φ(X) is integrable. Then

E[φ(X) | G](ω) =
∫
R
φ(ξ)µ(dξ, ω) for almost all ω ∈ Ω.

In particular, if φ(ξ) = ξ, then

E[X | G](ω) =
∫
R
ξµ(dξ, ω) for almost all ω ∈ Ω.

Proof. Case 1 φ = ⊮H

For some Borel set H ∈ R.

RHS of (6) =

∫
R
⊮H(x)µ(dx× ω) = µ(H,ω) = P(X ∈ H|G) = E

[
⊮{X∈H}|G

]
⊮{X∈H}(ω) =

{
1 if ω ∈ {X ∈ H}
0 if ω /∈ {X ∈ H}

=

{
1 if X(ω) ∈ H

0 if X(ω) /∈ H

⊮H(X)(ω) = ⊮H(X(ω)) =

{
1 if X(ω) ∈ H

0 if X(ω) /∈ H

So ⊮{X∈H} = ⊮H(X) and E
[
⊮{X∈H}|G

]
= E [⊮H(X)|G] = E [φ(X)|G]

Case 2 φ is a simple function i.e., φ =
∑k

i=1 αi⊮Hi
with αi ∈ R, Hi ∈ R.
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Follows by Case 1, using linearity. Case 3 φ ≥ 0. By Theorem 13.5, there exists a sequence
{φn} of simple functions s.t. φn(x) ↑ φ(x) as n→ ∞, for any x ∈ R. By Case 2,

E[φn(X)|G](ω) =
∫
R
φn(x)µ(dx× ω) ∀n for a.a. ω

Let n→ ∞ in (7). We have:

E[φn(X)|G] a.s.−−→ E[φ(X)|G] by D.C.T.
To justify the application of this theorem, note that
φn(X) ≤ φ(X)∀n and φ(X) is integrable (by hypothesis)∫

R φn(X)µ(dx× ω) →
∫
R φ(X)µ(dx× ω) by MCT.

We obtain:

E[φ(X)|G] =
∫
R
φ(X)µ(dx× ω) for a.a. ω

Case 4 φ is arbitrary. We write φ = φ+ − φ− where

φ+(x) =

{
φ(x) if φ(x) ≥ 0

0 if φ(x) < 0

φ−(x) =

{
0 if φ(x) ≥ 0

−φ(x) if φ(x) < 0

The conclusion follows by applying Case 3 to φ+, φ− and use linearity.

Using Theorem 3.15, we can give another proof of Jensen’s Inequality for Conditional
Expectation: for any convex function φ,

φ(E(X|G)) ≤ E[φ(X)|G] a.s.

To see this, let µ(dx, ω) be the cond. distr. of X given G. Then

E(X|G)(ω) =
∫
R
xµ(dx× ω) by (6)’

φ(E(X|G)(ω)) = φ

(∫
R
xµ(dx× ω)

)
for a.a. ω ∈ R

On the other hand, by (6)

E[φ(X)|G](ω) =
∫
R
φ(X)µ(dx× ω) for a.a. ω ∈ R

So it suffices to prove that:

φ

(∫
R
xµ(dx× ω)

)
≤
∫
R
φ(x)µ(dx× ω) for a.a. ω

This is in fact the (Classical) Jensen’s Inequality which says that

φ(E(X ′)) ≤ E[φ(X ′)] for r.v. X ′

So here we choose X ′ to be a r.v. with law µ(dx, ω) for fixed ω. Then{
E[X ′] =

∫
R xµ(dx, ω)

E[φ(X ′)] =
∫
R φ(x)µ(dx, ω)
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Recall from last time:

Theorem 14.1 (Theorem 34.5) —

E[φ(X)|G] =
∫
R
φ(z)µ(dz;ω)

for almost all ω. For all φ : R → R measurable s.t. φ(X) is integrable.

Here µ(H,ω) is the cond. distr. of X given G:{
(i) µ(·, ω) is a probab. measure ∀ω ∈ Ω

(ii) µ(H, ·) = P (X ∈ H|G) a.s.

We will use the following result (see the proof of Th 25.6):

Lemma 14.2 — Let µ be an arb. probab. measure on (R,R). Then there exists a probab.
space (Ω,F , P ) and a r.v. X : Ω → R s.t. µ is the law of X, i.e.

P (X ∈ B) = µ(B) ∀B ∈ R,

or equivalently

P (X ≤ x) = F (x) ∀x ∈ R where F (x) = µ((−∞, x]).

Proof. Let (Ω,F , P ) = ((0, 1),B(0, 1), λ) where λ is the Lebesgue measure.
Define the generalized inverse of F by:

F−1(u) = inf{x ∈ R;F (x) ≥ u} ∀u ∈ (0, 1)

It can be proved that: (exercise)

u ≤ F (x) ⇐⇒ F−1(u) ≤ x ∀x ∈ R∀u ∈ (0, 1)

Take X(ω) := F−1(ω) ∀ω ∈ (0, 1). Then (1) holds:

P (X ≤ x) = P ({ω ∈ (0, 1);X(ω) ≤ x}) = P ({ω ∈ (0, 1);F−1(ω) ≤ x})

= λ((0, F (x)]) = F (x)

§14.1 Markov Inequality for Cond. Expectation

Lemma 14.3 (Markov Inequality for Cond. Expectation) — For any integr. r.v. X and any
sub-σ-field G ⊆ F , we have:

P (|X| ≥ α|G) ≤ 1

αp
E(|X|p|G) a.s.

Proof. Let φ(x) = 1{|X|≥α}, x ∈ R. Clearly φ : R → R is measurable. Let µ(H,ω) be the
conditional distr. of X given G.

For every ω ∈ Ω fixed, let Zω be a r.v. defined on probab. space (Ω′,F ′, P ′) = ((0, 1),B(0, 1), λ)
such that the law of Zω (under P ′) is µ(·;ω), i.e.

P ′ ◦ Z−1
ω = µ(·, ω) (see Lemma 1)
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Then
P (|X| ≥ α|G)(ω) = E

[
1{|X|≥α}|G

]
(ω) = E[φ(X);G](ω)

Applying Theorem 34.5,∫
R
φ(x)µ(dx;ω) =

∫
Ω′
φ(Zω)dP

′ = P ′(|Zω| ≥ α)

By the classical Markov inequality,

P ′(|Zω| ≥ α) ≤ 1

αp
E

′
(|Zω|p) =

1

αp

∫
R
|x|pµ(dx;ω)

Thus,

P (|X| ≥ α|G)(ω) ≤ 1

αp
E(|X|p|G)(ω)

§14.2 Inequalites for Cond. Expectation

Corollary 14.4 (Chebyshev’s Inequality for Cond. Expectation)

For any integrable r.v. X and for any sub-σ-field G,

P (|X − E(X|G)| ≥ α|G) ≤ 1

α2
Var(X|G) ∀α > 0, if X2 is integrable

where
Var(X|G) = E((X − E(X|G))2|G) = E(X2|G)− (E(X|G))2

Proof. Let Y = X − E(X|G). Then Y is integrable since it is a linear combination of integrable
r.v.’s. We apply Lemma 2 to Y with p = 2. We obtain:

P (|Y | ≥ α|G) ≤ 1

α2
E(Y 2|G) = 1

α2
Var(X|G)

P (|X − E(X|G)| ≥ α|G)

Note that Theorem 34.5 has a multivariate extension:

E[φ(X,Y )|G](ω) =
∫
R2

φ(x, y)µ(dx, dy;ω) for a.a. ω

where µ(H,ω) is the cond. distribution of (X,Y ) given G, i.e.{
(i) µ(·, ω) is a prob. measure on R2∀ω ∈ Ω

(ii) µ(H, ·) = P ((X,Y ) ∈ H|G) a.s. ∀H ∈ R2

Lemma 14.5 (Hölder Inequality for Cond. Expectations) — Let X,Y be two r.v.’s s.t. XY
is integrable (E(|X|p|G) is integrable and E(|Y |q|G) is integrable).
For some p, q > 1 s.t.

1

p
+

1

q
= 1

let G be an arb. sub-σ-field of F . Then

E[|XY ||G] ≤ (E(|X|p|G))
1
p (E(|Y |q|G))

1
q
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Proof. Let µ(H,ω) be the cond. distr. of (X,Y ) given G. Let φ : R2 → R be given by

φ(x, y) = |xy|

Clearly φ is measurable. For any ω ∈ Ω fixed, let Zω = (Z1
ω, Z

2
ω) be a random vector defined on

a probab. space (Ω′,F ′, P ′) s.t. the law of Zω under P ′ is µ(·, ω), i.e.

P ′ ◦ Z−1
ω = µ(·, ω)

Then
E[|XY ||G](ω) = E[φ(X,Y )|G](ω) = E[φ(Z1

ω, Z
2
ω)]

By change of variable, ∫
R2

φ(z1ω, z
2
ω)dP

′ =

∫
R
|z1ωz2ω|dµ(zω;ω)

By Hölder’s inequality,

E[|XY ||G] ≤ (E(|X|p|G))
1
p (E(|Y |q|G))

1
q

Finally, we define the Markov process:

Definition 14.6 Let (Ω,F , P ) be a prob. space and Xt : Ω → R a r.v.
For all t ≥ 0, the collection (Xt)t≥0 is a Markov process if

P (Xu ∈ H|Xs, s ≤ t) = P (Xu ∈ H|Xt) ∀t < u

Here the cond. probab. is w.r.t. σ{Xs; s ≤ t} on the RHS and σ{Xt} on the LHS.
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§15.1 Markov Decision Process

Recall the following definition from last time:
A process (Xt)t≥0 (i.e. a collection of r.v.’s defined on (Ω,F , P )) is called a Markov process if

P (Xu ∈ H|Xs, s ∈ [0, t]) = P (Xu ∈ H|Xt) ∀0 ≤ t < u (3)

Denote G1 = σ({Xs; s ∈ [0, t]}) “the history” (or the past) of the process up to time t
G2 = σ({Xt}) “the present”
G3 = σ({Xu}) where u > t “the future”
Relation (1) says that for every A ∈ G3

P (A|σ(G1 ∪ G2)) = P (A|G2) (4)

which is denoted by G1 ∨ G2 (notation).

Lemma 15.1 (Problem 3.11) — Let G1,G2,G3 be sub-σ-fields of F . The following conditions
are equivalent:

(i) P (A|G1 ∨ G2) = P (A|G2) for all A ∈ G3.

(ii) P (A∩B|G2) = P (A|G2)·P (B|G2) for all A ∈ G1, B ∈ G3, i.e., A andB are “conditionally
independent” given G2.

(iii) P (A|G2 ∨ G3) = P (A|G2) for all A ∈ G1.

Proof. It is enough to prove (i) =⇒ (ii). The argument for (ii) =⇒ (i) is the same. We have

P (A ∩A3|G2) = E [1A∩A3
|G2]

= E [E [1A1A3
|G1 ∨ G2] |G2] (Tower Property)

= E [1AE [1A3
|G1 ∨ G2] |G2]

= E [1AP (A3|G1 ∨ G2)|G2]

(1A3
is G1-measurable, hence G1 ∨ G2-measurable)

= E [1AP (A3|G2)|G2] (from (i))

= E [1A|G2]P (A3|G2)

= P (A|G2)P (A3|G2).

This shows that (i) implies (ii). (ii) =⇒ (i) We show that P (A|G2) satisfies the two conditions
from the def of P (A3|G1 ∨ G2):

1) P (A|G2) is G2-measurable, hence G1 ∨ G2-measurable

2) We have to show that∫
G

P (A|G2) dP = P (A ∩G) ∀G ∈ G1 ∨ G2

By Theorem 33.1, it is enough to prove that (i) holds ∀G ∈ F where {F = A ∩ A′ : A ∈
G1, A

′ ∈ G2} is a π-system (exer) and σ(F ) = G1 ∨ G2 (exer). Ω is a countable union of sets in F
(Ω ∈ G1,G2).
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Let G = A ∩A′ with A ∈ G1, A
′ ∈ G2. Then on the left-hand side of (1) we have: LHS of (1):

LHS of (1) =

∫
A1∩A2

P (A3|G2) dP

= E [1A1∩A2
P (A3|G2)]

= E

[
E

[
1A1

P (A3|G2)

1A2

∣∣∣G2

]]
by G2-measurability (product of G2-meas. rv’s)

= E [1A2
P (A3|G2) · E [1A1

|G2]]

= E [1A2
P (A3|G2)] · P (A1|G2)

using (ii)

= E [1A1∩A2∩A3
|G2]

= P (A1 ∩A2 ∩A3).

RHS of (1):

RHS of (1) = P (A1 ∩ (A2 ∩A3))

= E [1A1∩A2∩A3 ]

= E
[
E
[
1A1∩A31A2

∣∣∣G2

]]
= E [1A2

] · E [1A1∩A3
|G2]

= P (A2) · P (A1 ∩A3|G2).

§15.2 Discrete Time Martingales

Definition 15.2 Let X1, X2, . . . be a sequence of random variables on a probability space
(Ω,F , P ), and let F1,F2, . . . be a sequence of σ-fields in F . The sequence {(Xn,Fn) : n =
1, 2, . . .} is a martingale if the following four conditions hold:

1. Fn ⊆ Fn+1,

2. Xn is measurable with respect to Fn,

3. E[|Xn|] <∞ for all n,

4. with probability 1, E[Xn+1|Fn] = Xn.

We simply say that {Xn}n≥1 is a martingale if (Xn) is a martingale with respect to the natural
filtration

FX
n = σ(X1, X2, . . . , Xn)

which is the “smallest” σ-filtration which satisfies (i) and (ii).
Remark: If (ii) holds, then (iv) is equivalent to:∫

A

Xn dP −
∫
A

Xn+1 dP = 0 ∀A ∈ Fn

(by the def. of E[Xn|Fn]).
Motivation: Bets placed at horse races

• Xn = fortune of the gambler after the n-th race

• Fn = information accumulated by the gambler up to the n-th race.

• E[Xn+1|Fn] = expected fortune after the (n+ 1)-th race.

The game is fair if E[Xn+1|Fn] = Xn.
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§16.1 Section 35 Martingales Continued

Definition 16.1 Let (Xn)n≥1 be a sequence of random variables on a probability space
(Ω,F , P ). The sequence is a martingale with respect to the filtration (Fn)n≥1 if:

(i) Fn ⊂ Fn+1 for all n ≥ 1.

(ii) Xn is Fn-measurable for all n ≥ 1.

(iii) E[|Xn|] <∞ for all n ≥ 1.

(iv) E[Xn+1|Fn] = Xn almost surely for all n ≥ 1.

Basic Example: Let (Sn)n≥1 be independent random variables with E[∆n] = 0 where
Xn = 1

2∆n and Fn = σ(∆1, . . . ,∆n). Then (Xn)n≥1 is a martingale with respect to (Fn)n≥1.

Example 16.2 (Martingale Representation with Respect to Filtration). Let (Ω,F , P ) be a
probability space, let ν be a finite measure on F , and let F1,F2, . . . be a nondecreasing sequence
of σ-fields in F . Suppose that P dominates ν when both are restricted to Fn—that is, suppose that
A ∈ Fn and P (A) = 0 together imply that ν(A) = 0. There is then a density or Radon-Nikodym
derivative Xn of ν with respect to P when both are restricted to Fn. Xn is a function that is
measurable Fn and integrable with respect to P , and it satisfies∫

A

Xn dP = ν(A), A ∈ Fn. (5)

If A ∈ Fn then A ∈ Fn+1 as well, so that∫
A

Xn+1 dP = ν(A); (6)

this and (35.9) give (35.3). Thus the Xn are a martingale with respect to the Fn.

Definition 16.3 We say that a sequence (Xn)n≥1 is a submartingale with respect to the
filtration (Fn)n≥1 if it satisfies conditions (i)–(iii) in Definition 1, and the following property:

E[Xn+1|Fn] ≥ Xn a.s. for all n ≥ 1.

Condition (iv) is equivalent to:∫
A

Xn dP ≤
∫
A

Xn+1 dP ∀A ∈ Fn.

Example 16.4 (Basic Example). Let (∆n)n≥1 be i.i.d. random variables with E[∆n] ≥ 0 for
all n ≥ 1. Let Xn =

∑n
i=1

∆i

2 and Fn = σ(∆1, . . . ,∆n), then (Xn)n≥1 is a submartingale with
respect to (Fn)n≥1.

To see this, we note that for all n ≥ 1,

E[Xn+1|Fn] = E[Xn +
∆n+1

2
|Fn]

= Xn + E[
∆n+1

2
|Fn]

= Xn +
E[∆n+1]

2
≥ Xn a.s.,

since ∆n+1 is independent of Fn and hence E[∆n+1|Fn] = E[∆n+1].
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If (Xn)n≥1 is a submartingale with respect to (Fn)n≥1, then (Xn)n≥1 is also a submartin-
gale with respect to (Gn)n≥1 where Gn = σ(X1, . . . , Xn) is the minimal σ-field generated by
(X1, . . . , Xn).

Properties of Submartingales (exercise):

1. E[Xn+1|Fn] ≥ Xn almost surely for all n ≥ 1.

2. E[X1] ≤ E[X2] ≤ E[X3] ≤ . . .

3. If Xn −Xn−1 = ∆n for all n ≥ 1, then ∆n is integrable and E[∆n|Fn−1] ≥ 0 almost surely
for all n ≥ 1.

Theorem 16.5 — (i) If (Xn)n≥1 is a martingale with respect to (Fn)n≥1 and ϕ : R → R
is a convex function such that ϕ(Xn) is integrable for all n ≥ 1, then (ϕ(Xn))n≥1 is a
submartingale with respect to (Fn).

(ii) If (Xn)n≥1 is a submartingale with respect to (Fn) and ϕ : R → R is a convex non-
decreasing function such that ϕ(Xn) is integrable for all n ≥ 1, then (ϕ(Xn))n≥1 is a
submartingale with respect to (Fn).

Proof. Properties (i)-(ii) from the definition of submartingale are clearly satisfied. To prove (iv’)
we have the following:

(i) E[ϕ(Xn+1)|Fn] ≥ ϕ(E[Xn+1|Fn]) = ϕ(Xn) by Jensen’s Inequality for Conditional Expecta-
tion.

(ii) E[ϕ(Xn+1)|Fn] ≥ ϕ(E[Xn+1|Fn]) ≥ ϕ(Xn) as ϕ is convex and ϕ is non-decreasing.

Observation: If (Xn)n≥1 is a martingale then (X2
n)n≥1 and (|Xn|)n≥1 are sub-martingales.

Definition 16.6 Let (Fn)n≥1 be a filtration on a probability space (Ω,F ,P) and let τ : Ω →
{1, 2, . . .} be a random variable such that {τ ≤ n} ∈ Fn for all n ≥ 1. We say that τ is a
stopping time with respect to (Fn)n≥1 and define

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn for all n ≥ 1}.

If (Xn)n≥1 is a sequence of random variables on (Ω,F ,P), we define a new random variable
Xτ : Ω → R by

Xτ (ω) := Xτ(ω)(ω) for all ω ∈ Ω.

Lemma 16.7 — Let F = (Fn)n≥1 be a filtration on a probability space (Ω,F ,P). Consider
the following statements:

(a) τ is a stopping time with respect to (Fn) if {τ = n} ∈ Fn for all n ≥ 1.

(b) Fτ is a σ-field if τ is a stopping time with respect to (Fn).

(c) τ is Fτ -measurable and Xτ is Fτ -measurable if Xn is Fn-measurable.

(d) If τ(ω) = k for some fixed k ∈ N, then Fτ = Fk.

(e) If τ1 ≤ τ2 are stopping times with respect to (Fn), then Fτ1 ⊆ Fτ2 .

Proof. a) We have that {τ = n} =
⋂

m≥n{τ ≤ m} ⊆ Fm ⊆ Fn for allm ≥ n, hence {τ = n} ∈ Fn.

Conversely, {τ ≤ n} =
⋃n

k=1{τ = k} ∈ Fk ⊆ Fn for all k ≤ n, therefore {τ ≤ n} ∈ Fn.
b) Fτ satisfies the following axioms:
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1. ∅ ∈ Fτ : ∅ ∩ {τ ≤ n} = ∅ ∈ Fn for all n ≥ 1.

2. If A ∈ Fτ then Ac ∈ Fτ : A
c ∩ {τ ≤ n} = {τ ≤ n} \A ∈ Fn because {τ ≤ n} and A are in

Fn.

3. If {Ak} ⊆ Fτ then
⋃

k Ak ∈ Fτ : (
⋃

k Ak) ∩ {τ ≤ n} =
⋃

k(Ak ∩ {τ ≤ n}) ∈ Fn by the
closure of Fn under countable unions.

We continue with parts c) and e) next time.

54



55

§17 March 20, 2024

Recall: Let (Fn)n≥1 be a filtration on a probability space (Ω,F , P ). A random variable
τ : Ω → {1, 2, . . .} is called a stopping time with respect to (Fn)n≥1 if

{τ = n} ∈ Fn for all n ≥ 1.

In this case, we define Fτ ≡ {A ∈ F : A ∩ {τ = n} ∈ Fn for all n ≥ 1}.
We proved the following properties:

1. τ is a stopping time if {τ = n} ∈ Fn for all n ≥ 1.

2. Fτ is a σ-field.

3. τ is Fτ -measurable.

4. If τ = k (constant) then Fτ = Fk.

Exercise: Show that Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn for all n ≥ 1}.
Property: If τ1 ≤ τ2 are stopping times with respect to (Fn)n≥1, then Fτ1 ⊆ Fτ2 .

Proof. Let A ∈ Fτ1 . We want to prove that A ∈ Fτ2 , i.e., A ∩ {τ2 = n} ∈ Fn for all n.

A ∩ {τ2 = n} = (A ∩ {τ1 = n}) ∩ {τ2 = n} ∈ Fn since {τ2 = n} ∈ Fn.

Property: If (Xn)n≥1 are r.v.’s such that Xn is Fn-measurable for all n ≥ 1, then 1{Xτ∈B} is
Fτ -measurable.

Proof. Let B ∈ R be an arbitrary Borel set. We have to prove that 1−1
{Xτ∈B}(1) = {Xτ ∈ B} ∈ Fτ .

Using property 5, this is equivalent to showing that {Xτ ∈ B} ∩ {τ = n} ∈ Fn for all n ≥ 1.
Note that:

{Xτ ∈ B} ∩ {τ = n} = {ω ∈ Ω : Xτ(ω)(ω) ∈ B, τ(ω) = n}
= {ω ∈ Ω : Xn(ω) ∈ B} ∩ {τ = n} ∈ Fn, for any n ≥ 1.

Theorem 17.1 (Optional Sampling Theorem) — Let (Xi)i=1,...,n be a submartingale with
respect to the filtration (Fi)i=1,...,n. Let τ1 and τ2 be stopping times with respect to
(Fi)i=1,...,n with τ1, τ2 : Ω → {1, 2, . . . , n}. Then

E[Xτ2 |Fτ1 ] ≥ Xτ1 a.s. (7)

that is, (Xτ1 , Xτ2) is a submartingale with respect to (Fτ1 ,Fτ2).

Proof. Let Xτi =
∑n

k=1Xk1{τi=k} then |Xτi | ≤
∑n

k=1|Xk|1{τi=k} ≤
∑n

k=1|Xk|. So E[|Xτi |] ≤∑n
k=1 E[|Xk|] <∞, i.e., Xτi is integrable. (for i = 1, 2)
To show (2), we must prove that:∣∣∣∣∫

A

Xτ2dP

∣∣∣∣ ≥ ∫
A

Xτ1dP ∀A ∈ Fτ1 (3) (8)

Let ∆k = Xk − Xk−1 for k = 2, . . . , n, and ∆1 = X1. Then Xτ2 − Xτ1 =
∑τ2

k=τ1+1 ∆k =∑n
k=τ1+1 ∆k1{τ1<k≤τ2}.

(Use:
∑m

k=τ1+1(Xk−Xk−1) = (Xm−1−Xτ1)+(Xm−2−Xm−1)+. . .+(Xm−Xm−1) = Xm−Xτ1

for any m, τ1 ∈ {1, . . . , n}, τ1 ≤ m)
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In our case, L = τ1(ω),M = τ2(ω). Hence, for A ∈ Fτ1 ,∫
A

(Xτ2 −Xτ1) dP =

∫
A

τ2∑
k=τ1+1

∆k dP =

∫
A

n∑
k=τ1+1

∆k1{τ1<k≤τ2} dP.

Note that
1Bτ2

:= A ∩ {τ1 < k ≤ τ2} = A ∩ {τ1 < k} ∩ {k ≤ τ2} ∈ Fτ2 ,

where Bτ2 ∈ Fτ2 by the definition of Fτ2 . Recall that (∆k)k=1,...,n is a submartingale difference:

E[Xk|Fk+1] ≥ Xk so E[Xτ2 −Xτ1 |Fτ2 ] ≥ 0 i.e. E[∆k|Fk+1] ≥ 0 a.s.

This means that for any set B ∈ Fτ1 , ∫
B

∆k dP ≥ 0.

In particular, this is true for B = Bτ2 above. Hence∫
A

∆k dP ≥ 0, for all A ∈ Fτ1 , {τ1 < k ≤ τ2}.

Hence ∫
A

(Xτ2 −Xτ1) dP ≥ 0.

If τ1 ≤ τ2 ≤ . . . ≤ τm are stopping times with respect to (Fk)k=1,...,n, and (Xk)k=1,...,n is a
submartingale with respect to (Fk)k=1,...,n, then (Xτ1 , Xτ2 , . . . , Xτm) is a submartingale with
respect to (Fτ1 ,Fτ2 , . . . ,Fτm).

Theorem 17.2 (Kolmogorov’s Maximal Inequality) — Let (Xk)k≥1 be i.i.d. random variables
with E(X2

k) <∞ for all k. Let

Sn =

n∑
k=1

Xk,

and we know that (Sn) is a martingale. Then Kolmogorov’s inequality states that

P
(
max
k≤n

|Sk| > α

)
≤ 1

α2
E(S2

n) for all α > 0.

Note that maxk≤n |Sk| > α is equivalent to maxk≤n S
2
k > α2. Hence, we can write the inequality

as:

P
(
max
k≤n

S2
k > α2

)
≤ E(S2

n)

α2
.

Recall that (S2
n) is a submartingale. The next result extends this inequality to an arbitrary

submartingale.

Theorem 17.3 (Maximal Inequality) — Let (Xk)k=1,...,n be a submartingale with respect to
(Fk)k=1,...,n. Then for any α > 0,

P
(
max
k≤n

|Xk| ≥ α

)
≤ 1

α
E(|Xn|).

Proof. Define: τ : Ω → {1, 2, . . . , n} as

τ(ω) =

{
min{j ⩽ n : Xj(ω) ≥ α} if there exists j ⩽ n s.t. Xj(ω) ≥ α,

n otherwise (i.e.,Xi(ω) < α ∀i ⩽ n).
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Clearly, τ is a stopping time w.r.t. (Fk)k=1,...,n.

Proof of Claim: We have to prove that {τ = k} ∈ Fk for all k = 1, . . . , n (see property 1 on
page 1).

Let {rj}j=1,...,n be arbitrary. We have two cases:

Case 1: {rj ⩽ m}

For {τ = k} =
⋂k

j=1{Xj < α} ∩ {Xk ≥ α} ∈ Fk

Case 2: {rj = n}
For {τ = n} =

⋂n
j=1{Xj < α} ∈ Fn.

Define τ ⩾ n (also a stopping time). Clearly, τ1 ≤ τ2. By Optional Sampling Theorem
(Theorem 35.2)

E[Xτ2 |Fτ1 ] ≥ Xτ1 a.s.

Let Mτ = max{Xi, i ≤ τ}, for τ = 1, . . . , n. Clearly, Mτ1 ≤Mτ2 ≤ · · · ≤Mτn .

Let us examine the event {Mn ≥ α}.
Claim: {Mn ≥ α} ∈ Fτ1 , i.e., {Mn ≥ α} ∩ {τ1 ≤ τ2} ∈ Fτ2 for all τ2 = 1, . . . , n.

Proof of Claim: We will show that: ∀τ2 = 1, . . . , n.

{Mn ≥ α} ∩ {τ1 ≤ τ2} = {Mτ2 ≥ α}

To prove (7), we use double-inclusion:

(⊆) Let ω ∈ {Mτ2 ≥ α}. Then Mτ2(ω) ≥ α. But since Mτ2(ω) = max{Xi(ω), i ≤ τ2} and τ1(ω)
is the smallest index i for which Xi(ω) ≥ α, we have {τ1(ω) ≤ τ2}.
(⊇) If τ2 = n, the inclusion is clear. If τ2 = n − 1, by the definition of τ1, Xτ1 ≥ α. But

Mτ2 ≥ Xτ1 , so Mτ2 ≥ α. On the event {τ1 ≤ τ2}, we have Mτ1 ≤Mτ2 . Hence, {Mτ2 −Xτ1 ≥ 0}.
Remark: If τ1, τ2, . . . , τn are stopping times w.r.t. (Fτ )τ=1,...,n, then (Xτ1 , Xτ2 , . . . , Xτn) is a

submartingale w.r.t. (Fτ1 ,Fτ2 , . . . ,Fτn).

Coming back to (8), we recall that (8) means that∫
A

Xτ2 dP ≥
∫
A

Xτ1 dP ∀A ∈ Fτ1 ,

we will this inequality with A = {Mn ≥ α} ∈ Fτ1 , hence∫
1{Mn≥α}Xτ2 dP ≥

∫
1{Mn≥α}Xτ1 dP.

To summarize, we obtain that:∫
{Mn≥α}

Xτ2 dP ≤
∫
{Mn≥α}

Xn dP (9)

On the other hand, {Mn ≥ α} =
⋃n

k=1{Xk ≥ α}. So if ω ∈ {Mn ≥ α}, then τ2 = n such that
Xτ2(ω) ≥ α and τ1(ω) ≤ τ2.

Hence ∫
{Mn≥α}

Xτ2 dP = αP (Mn ≥ α) (10)

Putting (9) and (10) together, we get:

αP (Mn ≥ α) ≤
∫
{Mn≥α}

X+
n dP −

∫
{Mn≥α}

X−
n dP ≤

∫
Ω

(X+
n +X−

n ) dP = E(|Xn|)
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§18 March 27, 2024

§18.1 Martingales Continued

Let [a, b] be an interval, and X1, X2, . . . , Xn are random variables. Inductively, we define variables
σ1, σ2, . . . , σn as follows:

σ1 =

{
min{j ≤ n : Xj ≤ α} if there exists j ≤ n s.t. Xj ≤ α

n otherwise

For any k ≤ n:

• if k is even,

σk =

{
min{j ≤ n; j > σk−1 and Xj ≥ β} if there exists j ≤ n s.t. j > σk−1 and Xj ≥ β

n otherwise

• if k is odd,

σk =

{
min{j ≤ n; j > σk−1 and Xj ≤ α} if there exists j ≤ n s.t. j > σk−1 and Xj ≤ α

n otherwise

We define the number U of upcrossings of [a, b] by X1, . . . , Xn as the largest index i s.t.

Xσ2i−1
≤ α < β ≤ Xσ2i

Example: n = 17. Fix ω ∈ Ω.

In this picture,
U(ω) = 2,

σ1(ω) = 4, σ2(ω) = 6, σ3(ω) = 10, σ4(ω) = 12, σ5(ω) = 16, σ6 = . . . = σ17 = 17

Theorem 18.1 (Doob’s Upcrossing Theorem) — Let (Xk)k=1,...,n be a submartingale w.r.t.
(Fk)k=1,...,n and U be the number of upcrossings of [a, b] by X1, . . . , Xn. Then

E(U) ≤ E(|Xn|) + |a|
β − α

Proof. Let
Yk = max{Xk − α, 0}

Note that ψ(x) = max{x− α, 0} is a convex and non-decreasing function ψ : R → R.
By Theorem 35.1 (iii), (Yk)k=1,...,n is a submartingale w.r.t. (Fk)k=1,...,n.

Note that σ1, . . . , σn are stopping times w.r.t. (Fk)k=1,...,n (exercise).

Moreover,

• for k = 1,

σk =

{
min{j ≤ n;Xj = 0} if there exists j ≤ n s.t. Xj = 0

n otherwise

• for k even,

σk =

{
min{j ≤ n; j > σk−1 and Xj ≥ β} if there exists j ≤ n s.t. j > σk−1 and Xj ≥ β

n otherwise
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• for k odd,

σk =

{
min{j ≤ n; j > σk−1 and Xj = 0} if there exists j ≤ n s.t. j > σk−1 and Xj = 0

n otherwise

Then U is the number of upcrossings of [0, θ] by Y1, . . . , Yn.
Note that 1 ≤ σ1 ≤ σ2 ≤ . . . ≤ σn = n. By the Optional Stopping Theorem (Th. 35.2),

(Yσk
)k=1,...,n is a submartingale w.r.t. (Fσk

)k=1,...,n.

Hence,
E(Yσk

| Fσk−1
) ≥ Yσk−1

∀k = 2, . . . , n.

In particular,
E(Yσk

) ≥ E(Yσk−1
) ∀k = 2, . . . , n.

It follows that

Yn ≥ Yσn
≥ Yσn

− Yσ1
=

n∑
k=2

(Yσk
− Yσk−1

)

n∑
k=2

(Yσk
− Yσk−1

) =

n∑
k=2

k even

(Yσk
− Yσk−1

) +

n∑
k=2
k odd

(Yσk
− Yσk−1

)

Hence,

E(Yn) ≥ E

 n∑
k=2

k even

(Yσk
− Yσk−1

)

+ E

 n∑
k=2
k odd

(Yσk
− Yσk−1

)

 ≥ 0

If Yσ2i ≥ θ, then
Yσ2i − Yσ2i−1 ≥ θ

Since there are U such differences, we get∑
e

≥ θU

and so
E(
∑
e

) ≥ θE(U) (3)

From (2) and (3), we get

E(U) ≤ E(|Xn|) + |a|
θ

Finally,

E(Yn) =

∫
Ω

max{Xn − α, 0}dP ≤
∫
Ω

|Xn − α|dP ≤ E(|Xn|) + |α| (5)

So

E(U) ≤ E(|Xn|) + |α|
β − α

§18.2 Martingale Convergence Theorem

If (Xn)n≥1 is a submartingale w.r.t. (Fn) and

K := sup
n≥1

E(|Xn|) <∞,

then there exists an integrable random variable X such that Xn → X a.s. Moreover, E(|X|) ≤ 1.
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Proof

Fix α, β ∈ R with α < β. Let Uα,β
n be the number of upcrossings of [α, β] by X1, . . . , Xn. By

Theorem 35.4,

E(Uα,β
n ) ≤ E(|Xn|) + α

β − α
≤ K + α

β − α
∀n ≥ 1.

Note that (Uα,β
n ) is a non-decreasing sequence. Hence

lim
n→∞

Uα,β
n exists (but may be ∞).

By Monotone Convergence Theorem,

E(Uα,β
n ) ↑ E( lim

n→∞
Uα,β
n ).

By (7),

E( lim
n→∞

Uα,β
n ) ≤ K + α

β − α
<∞.

Hence
lim
n→∞

Uα,β
n <∞ a.s. (8).

For α, β ∈ R with α < β, let

X∗ = lim sup
n→∞

Xn and X∗ = lim inf
n→∞

Xn.

Then,
X∗ = inf

n≥1
sup
k≥n

Xk and X∗ = sup
n≥1

inf
k≥n

Xk.

Claim

{ω ∈ Ω : X∗(ω) < α < β < X∗(ω)} ⊂ {ω ∈ Ω : lim
n→∞

Uα,β
n (ω) = ∞}

with probability 0.

Proof of Claim

X∗(ω) = sup inf
k≥n

Xk(ω) < α

implies

∀n, inf
k≥n

Xk(ω) < α.

Similarly,
X∗(ω) > β

implies

∀n, sup
k≥n

Xk(ω) > β.

By (8),
P (X∗ < α < β < X∗) = 0 ∀α, β ∈ R, α < β.

From here,

0 ≤ P (X∗ < X∗) = P

 ⋃
α,β∈Q,α<β

{X∗ < α < β < X∗}

 ≤
∑

α,β∈Q,α<β

P (X∗ < α < β < X∗) = 0.
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So,
P (X∗ < X∗) = 0 and P (X∗ = X∗) = 1.

Hence, limn→∞Xn = X exists.
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